
Experiment No 1 
 

AIM: To simulate IoT device communication using MQTT or HTTP protocols. 

Objective: Demonstrate message publishing and subscribing using paho-mqtt in Google 
Colab. 

Tools Used: Google Colab, Python libraries (paho-mqtt or requests). 

Theory: The Internet of Things (IoT) refers to the network of interconnected devices that 
communicate and exchange data over the internet or other communication networks. These 
devices range from simple sensors and actuators to complex machines. For these devices to 
work seamlessly, communication protocols are essential for enabling data exchange. Two of the 
most widely used protocols for communication in IoT are MQTT (Message Queuing Telemetry 
Transport) and HTTP (Hypertext Transfer Protocol). 

MQTT Protocol: 

MQTT is a lightweight, publish-subscribe messaging protocol designed for low-bandwidth, 
high-latency, and unreliable networks, which are common in IoT environments. It uses a 
"broker" to handle communication between devices. In MQTT, devices (known as "clients") 
connect to a central broker, and each client can either publish messages to a topic or subscribe 
to receive messages from a topic. 

The publish-subscribe model decouples message producers (publishers) from message 
consumers (subscribers), making it an ideal solution for IoT applications. A device can publish 
sensor data to a specific topic, and other devices that are subscribed to that topic will receive 
the data. This mechanism allows real-time communication with minimal overhead, which is 
crucial for applications that require rapid responses, such as remote monitoring and control 
systems. 

Key advantages of MQTT include: 

1. Low Bandwidth: MQTT’s small message headers and low overhead make it suitable for 
low-bandwidth environments. 

2. Quality of Service Levels: MQTT supports three levels of Quality of Service (QoS) to 
ensure reliable message delivery. 

3. Retained Messages: The broker can store the last message sent on a topic and send it 
to any new subscribers. 

4. Last Will and Testament (LWT): Clients can specify a message to be sent if they 
disconnect unexpectedly. 

HTTP Protocol: 

While MQTT is optimal for IoT, HTTP remains one of the most widely used protocols, especially 
in web services. It works on a request-response model, where a client sends an HTTP request 
to a server, and the server returns a response. HTTP is more suited for IoT applications where 
devices need to request data from servers or submit data in a stateless manner. 

However, HTTP can be less efficient in IoT settings because each request requires a new 
connection to the server, which may increase bandwidth usage and latency. This makes MQTT 
preferable for real-time, continuous communication, whereas HTTP is often used for periodic 
data retrieval or interaction with centralized systems. 



Program Code: 

1. import paho.mqtt.client as mqtt 
 

2. # Define callback functions 
3. def on_connect(client, userdata, flags, rc): 
4.     print("Connected with result code "+str(rc)) 
5.     client.subscribe("iot/test") 

 
6. def on_message(client, userdata, msg): 
7.     print(f"Message received: {msg.payload.decode()}") 

 
8. client = mqtt.Client() 
9. client.on_connect = on_connect 
10. client.on_message = on_message 

 
11. client.connect("broker.hivemq.com", 1883, 60) 
12. client.loop_start() 

 
13. client.publish("iot/test", "Hello IoT") 
14. client.loop_stop() 

 
Explanation  and logic of Code  
This Python code demonstrates how to use the Paho-MQTT library to connect to an MQTT 
broker, subscribe to a topic, and publish a message to that topic. Let’s go through the code line 
by line: 

1. import paho.mqtt.client as mqtt 

● This imports the paho.mqtt.client module and gives it the alias mqtt. This module 
provides functions for MQTT client operations, such as connecting to a broker, 
subscribing to topics, and publishing messages. 

2. # Define callback functions 

● This is a comment indicating that the following functions will define callbacks for handling 
events when certain actions (like connecting or receiving messages) occur. 

3. def on_connect(client, userdata, flags, rc): 

● This defines a function called on_connect which will be executed when the client 
successfully connects to the MQTT broker. The function has parameters: 

○ client: the MQTT client object. 
○ userdata: a user-defined object that is passed by the client (not used in this 

case). 
○ flags: flags returned by the broker (not used in this case). 
○ rc: result code indicating the connection status (0 for successful connection). 

4. print("Connected with result code "+str(rc)) 



● This prints a message indicating whether the connection was successful or not. The 
result code (rc) is converted to a string and appended to the message. A result code of 
0 means the connection was successful. 

5. client.subscribe("iot/test") 

● This instructs the client to subscribe to the MQTT topic "iot/test". Once subscribed, 
the client will start receiving messages published to that topic. 

6. def on_message(client, userdata, msg): 

● This defines a function called on_message that will be executed whenever a message is 
received from the broker. The function parameters are: 

○ client: the MQTT client object. 
○ userdata: user-defined data passed by the client (not used here). 
○ msg: the message object containing the topic and the payload (message 

content). 

7. print(f"Message received: {msg.payload.decode()}") 

● This prints the payload (message content) of the received message after decoding it. 
MQTT message payloads are typically in byte format, so the decode() method is used 
to convert it to a string. 

8. client = mqtt.Client() 

● This creates an MQTT client instance. The Client() constructor initializes a new 
MQTT client object that will be used for connecting to the broker, subscribing to topics, 
and publishing messages. 

9. client.on_connect = on_connect 

● This assigns the previously defined on_connect function as the callback to handle 
connection events. This means that whenever the client connects to the broker, the 
on_connect function will be invoked. 

10. client.on_message = on_message 

● This assigns the previously defined on_message function as the callback to handle 
received messages. This means that whenever the client receives a message, the 
on_message function will be triggered. 

11. client.connect("broker.hivemq.com", 1883, 60) 

● This line connects the MQTT client to the broker at the specified address 
(broker.hivemq.com) and port (1883). The 60 represents the keep-alive interval in 
seconds. The broker address is an MQTT broker that allows public connections for 
experimentation and testing. 



12. client.loop_start() 

● This starts a new thread for the MQTT client's network loop. The loop allows the client to 
manage network traffic (connect, publish, subscribe, and receive messages). This 
non-blocking call enables the program to continue running while the client is connected 
to the broker and performing tasks. 

13. client.publish("iot/test", "Hello IoT") 

● This publishes a message to the topic "iot/test". The message content is "Hello 
IoT". When the message is successfully sent, all clients that are subscribed to this topic 
will receive it. In this case, since the client itself is subscribed to the topic, it will also 
receive the message. 

14. client.loop_stop() 

● This stops the MQTT client’s network loop that was started with loop_start(). Since 
the client has already published the message and is no longer actively listening for 
messages, the loop is stopped to end the program. 

Logic: 

● The program demonstrates the basic publish-subscribe mechanism in MQTT. The MQTT 
client connects to the broker, subscribes to a topic, publishes a message to that topic, 
and receives its own message since it is subscribed to the same topic. The 
on_connect and on_message callbacks handle connection events and message 
reception, respectively. 

● The message flow is as follows: 
1. The client connects to the broker. 
2. Upon connection, it subscribes to the topic "iot/test". 
3. It publishes the message "Hello IoT" to the topic. 
4. The client receives the message through the on_message callback and prints it. 

The use of client.loop_start() and client.loop_stop() allows the MQTT client to 
run asynchronously without blocking the rest of the code. 

Observation Table: 

Published 
Message 

Received 
Message 

Hello IoT Hello IoT 

Conclusion : We have learned to set up basic MQTT communication, publish messages, and 
subscribe to topics. 

 

Home Work Assigned: 

Expand this experiment for another two topics Temperature and Pressure for publishing and subscribing 
using MQTT.  


	MQTT Protocol: 
	HTTP Protocol: 
	1. import paho.mqtt.client as mqtt 
	2. # Define callback functions 
	3. def on_connect(client, userdata, flags, rc): 
	4. print("Connected with result code "+str(rc)) 
	5. client.subscribe("iot/test") 
	6. def on_message(client, userdata, msg): 
	7. print(f"Message received: {msg.payload.decode()}") 
	8. client = mqtt.Client() 
	9. client.on_connect = on_connect 
	10. client.on_message = on_message 
	11. client.connect("broker.hivemq.com", 1883, 60) 
	12. client.loop_start() 
	13. client.publish("iot/test", "Hello IoT") 
	14. client.loop_stop() 
	Logic: 

