

Experiment No 2

AIM: To simulate sensor data generation and collection.

Objective: To simulate sensor data generation and collection for IoT applications. We will:

1.​ Generate random sensor data for parameters like temperature and humidity.
2.​ Collect the generated data in real-time.
3.​ Save the data to a file for further analysis.

Tools Used: Google Colab, Python libraries (random)

Theory:​
The Internet of Things (IoT) is a transformative concept, involving a network of interconnected
devices that communicate and exchange data to enable smart environments. Sensor data
generation is a fundamental aspect of IoT systems, where physical parameters such as
temperature, humidity, and pressure are measured by sensors and transmitted to processing
units or the cloud. This data is essential for analysis, decision-making, and actuation in
applications ranging from home automation to industrial monitoring.

Simulating sensor data enables learners to replicate the behavior of IoT devices without the
need for physical sensors. Using Python, we can generate pseudo-random data mimicking
real-world sensor readings, which helps students understand IoT data streams and their
processing. This approach is highly advantageous for prototyping and learning as it eliminates
the dependency on hardware.

The use of the random module in Python allows us to generate realistic, variable readings
within a defined range. For example, temperature readings can be emulated as floating-point
values within a typical range for environmental conditions. Simulated data is stored and
processed for tasks such as visualization, statistical analysis, or transmission over IoT
communication protocols like MQTT or HTTP.

This experiment demonstrates the basics of creating a simulated IoT environment, emphasizing
the importance of data generation, collection, and understanding real-world constraints like data
variability and trends.

Program Code:

import random

import time

import json

Function to simulate sensor data generation

def generate_sensor_data():

 """

 Simulates data for temperature and humidity sensors.

 Returns a dictionary containing the sensor readings.

 """

 temperature = round(random.uniform(20.0, 30.0), 2) # Random

temperature between 20°C and 30°C

 humidity = round(random.uniform(40.0, 60.0), 2) # Random humidity

between 40% and 60%

 timestamp = time.strftime("%Y-%m-%d %H:%M:%S") # Current timestamp

 return {

 "timestamp": timestamp,

 "temperature": temperature,

 "humidity": humidity

 }

Function to collect sensor data and save to a file

def collect_sensor_data(duration, interval, output_file):

 """

 Collects sensor data for a given duration and interval, and saves it to

a file.

 Args:

 - duration: Total duration in seconds for data collection.

 - interval: Time interval (in seconds) between data points.

 - output_file: File to save the collected data in JSON format.

 """

 collected_data = []

 start_time = time.time()

 print("Starting sensor data collection...\n")

 while time.time()-start_time < duration:

 # Generate sensor data

 sensor_data = generate_sensor_data()

 # Display the generated data

 print(f"Collected Data: {sensor_data}")

 # Append to the collection

 collected_data.append(sensor_data)

 # Wait for the specified interval

 time.sleep(interval)

 # Save the data to a file

 with open(output_file, 'w') as file:

 json.dump(collected_data, file, indent=4)

 print(f"\nSensor data collection completed. Data saved to

{output_file}")

Main program

if __name__ == "__main__":

 # Define simulation parameters

 duration = 30 # Collect data for 30 seconds

 interval = 5 # Collect data every 5 seconds

 output_file = "sensor_data.json"

 # Start the data collection

 collect_sensor_data(duration, interval, output_file)

Explanation and Logic of Code

1.​ Sensor Data Simulation:
○​ Randomly generates values for temperature (20.0–30.0 °C) and humidity

(40.0–60.0%) to mimic real-world sensor readings.
○​ Includes a timestamp for real-time tracking.

2.​ Data Collection:
○​ Runs a loop for a specified duration.
○​ Collects data at defined intervals using time.sleep(interval) to simulate

real-time behavior.
○​ Accumulates the data in a list for structured storage.

3.​ Data Storage:
○​ At the end of data collection, the sensor readings are saved in a JSON file for

analysis and visualization.
4.​ Dynamic Behavior:

○​ The program can adapt to different durations and intervals, making it versatile for
various simulation needs.

Message Flow

Below is the message flow describing the interaction between system components:

Flowchart:

Start Program​
→ Initialize Parameters (duration, interval, output file).​
→ Begin Data Collection Loop:

○​ Generate sensor data.
○​ Append data to collection.
○​ Print and store data. → End Loop After Duration.​

→ Save Data to JSON File.​
→ Stop Program.

Observation Table:

Outcome:​

Timestamp Temperature (°C) Humidity (%) Remarks

2025-02-01 06:01:22 26.35 46.17 Moderate temperature.

2025-02-01 06:01:27 20.7 52.77 Temperature Drops.

2025-02-01 06:01:32 29.09 43.33 Highest Temperature Recorded

2025-02-01 06:01:37 20.69 40.25 Lowest Temperature

2025-02-01 06:01:42 28.29 47.21 Temperature Rise Again

2025-02-01 06:01:47 20.87 57.78 Temperature Decrease Again

Conclusion:

Simulating sensor data generation and collection is a foundational exercise in understanding IoT
systems. This practical approach helps to grasp the concepts of real-time data acquisition,
storage, and processing. By extending the simulation with tasks like visualization, anomaly
detection, or cloud integration, We can bridge the gap between theory and real-world
applications, preparing them for advanced IoT challenges

Homework Assigned:

​
 Extend the Simulation

●​ Task: Add another sensor, such as a pressure and light intensity sensor, and simulate
its data along with temperature and humidity.

●​ Hint: Use the same random.uniform() function to generate random values for the
new sensor.

Program Code :

import random

import time

import datetime

def generate_sensor_data():

 # Simulate temperature data between 20 and 30 degrees Celsius

 temperature = random.uniform(20, 30)

 # Simulate humidity data between 40% and 60%

 humidity = random.uniform(40, 60)

 # Simulate pressure data between 980 and 1030 hPa

 pressure = random.uniform(980, 1030)

 # Simulate light intensity data between 0 and 1000 lux

 light_intensity = random.uniform(0, 1000)

 timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")

 return timestamp, temperature, humidity, pressure, light_intensity

Example usage: Generate and print sensor data every second for 5

iterations

for _ in range(5):

 timestamp, temperature, humidity, pressure, light_intensity =

generate_sensor_data()

 print(f"Timestamp: {timestamp}, Temperature: {temperature:.2f}°C,

Humidity: {humidity:.2f}%, Pressure: {pressure:.2f} hPa, Light Intensity:

{light_intensity:.2f} lux")

 time.sleep(1)

Observation Table :

Timestamps Temperature Humidity Pressure Light
Intensity

Remarks

2025-02-01
06:20:18

20.60°C 57.18% 1012.22 hPa 766.93 lux Low Temperature

2025-02-01
06:20:19

26.35°C 55.48% 988.97 hPa 897.92 lux Moderate Inc in
Temp.

2025-02-01
06:20:20

25.82°C 44.90% 1010.55 hPa 894.88 lux Stable & Normal
Temp.

2025-02-01
06:20:21

29.68°C 44.71% 982.10 hPa 634.59 lux Highest Temp.
Recorded

2025-02-01
06:20:22

25.42°C 50.76% 1010.49 hPa 288.27 lux Slightly Decrease in
Temp

Outcome :

Conclusion : This experiment successfully demonstrates the use of MQTT for real-time
sensor data publishing and subscribing. The system simulates temperature, pressure, humidity,
and light intensity values and transmits them to an MQTT broker.

	Flowchart:

