
17-02-2025

Experiment 4

AIM:
To send and visualize simulated IoT data using ThingSpeak.

Objective:
Interact with ThingSpeak’s API to upload and display IoT data.

Tools Used:
Python, ThingSpeak API, Requests Library, Matplotlib

Theory:
The Internet of Things (IoT) enables devices to collect, transmit, and process data over the
internet. In real-world applications, IoT data must be stored and visualized to make informed
decisions. ThingSpeak, a cloud-based IoT analytics platform, provides a simple yet powerful
way to store and analyze sensor data in real-time. It allows users to send data via RESTful APIs
and visualize it using built-in plotting tools.

ThingSpeak operates using "channels," where each channel contains multiple fields to store
data from different sensors. Users can send data to ThingSpeak using HTTP requests, and the
platform provides visualizations through charts, widgets, and MATLAB analytics.

In this experiment, simulated sensor data (such as temperature and humidity) will be generated

and transmitted to ThingSpeak using Python’s requests library. The uploaded data will then

be retrieved and visualized to analyze trends. This experiment demonstrates how IoT data can
be managed and visualized using ThingSpeak, bridging the gap between sensor data and
actionable insights.

Program Code:
(Python script to send and retrieve data from ThingSpeak)

import requests

import random

import time

import matplotlib.pyplot as plt

ThingSpeak API Key

API_KEY = "2BP633L92JHJRV62"

READ_API_KEY = "52YPAO3SPC89EKAJ"

CHANNEL_ID = "2832723"

URL for updating data

WRITE_URL = f"https://api.thingspeak.com/update?api_key={API_KEY}"

Simulated Sensor Data Upload

17-02-2025

for _ in range(10): # Sending 10 data points

 temperature = round(random.uniform(20.0, 30.0), 2)

 humidity = round(random.uniform(40.0, 60.0), 2)

 response =

requests.get(f"{WRITE_URL}&field1={temperature}&field2={humidity}")

 if response.status_code == 200:

 print(f"Data Sent: Temp={temperature}, Humidity={humidity}")

 time.sleep(15) # ThingSpeak allows updates every 15 seconds

Fetch and visualize data

READ_URL =

f"https://api.thingspeak.com/channels/{CHANNEL_ID}/feeds.json?api_key={REA

D_API_KEY}&results=10"

response = requests.get(READ_URL).json()

timestamps = [entry['created_at'] for entry in response['feeds']]

temperatures = [float(entry['field1']) for entry in response['feeds']]

humidities = [float(entry['field2']) for entry in response['feeds']]

plt.figure(figsize=(10, 5))

plt.plot(timestamps, temperatures, marker='o', label="Temperature (°C)")

plt.plot(timestamps, humidities, marker='s', label="Humidity (%)")

plt.xticks(rotation=45)

plt.xlabel("Time")

plt.ylabel("Sensor Readings")

plt.legend()

plt.title("ThingSpeak IoT Data Visualization")

plt.show()

Explanation of LOGIC:

● Sensor Data Simulation: Random values for temperature (20.0–30.0 °C) and humidity
(40.0–60.0%) are generated to simulate real IoT sensor readings.

● ThingSpeak Data Upload: The script sends the simulated data to ThingSpeak using an
HTTP request every 15 seconds.

● Data Retrieval & Visualization: The latest data from the ThingSpeak channel is fetched
using an API call and plotted using Matplotlib.

Explanation of Code:

1. Import Necessary Libraries:

17-02-2025

import requests
import random
import time
import matplotlib.pyplot as plt
from datetime import datetime

● requests : Facilitates sending HTTP requests to interact with ThingSpeak's API.

● random: Generates random numbers to simulate sensor data.

● time : Provides time-related functions, such as delays.

● matplotlib.pyplot : Enables plotting data for visualization.

● datetime : Handles date and time data, useful for timestamping.

2. Define ThingSpeak API Information:

WRITE_API_KEY = 'YOUR_WRITE_API_KEY'
READ_API_KEY = 'YOUR_READ_API_KEY'
CHANNEL_ID = 'YOUR_CHANNEL_ID'

● WRITE_API_KEY : Replace 'YOUR_WRITE_API_KEY' with your ThingSpeak channel's
Write API Key to authorize data uploads.

● READ_API_KEY : Replace 'YOUR_READ_API_KEY' with your ThingSpeak channel's

Read API Key to authorize data retrieval.

● CHANNEL_ID: Replace 'YOUR_CHANNEL_ID' with your ThingSpeak channel's unique
identifier.

3. Function to Send Data to ThingSpeak:

def send_data_to_thingspeak(temperature, humidity):
 url =
f'https://api.thingspeak.com/update?api_key={WRITE_API_KEY}&field1={te
mperature}&field2={humidity}'
 response = requests.get(url)
 if response.status_code == 200:
 print(f"Data sent successfully: Temp={temperature}°C,
Humidity={humidity}%")
 else:
 print("Failed to send data")

● Constructs a URL with the Write API Key and the data for field1 (temperature) and

field2 (humidity).
● Sends an HTTP GET request to ThingSpeak to upload the data.
● Checks the response status:

○ If 200 (OK), confirms successful data transmission.
○ Otherwise, indicates a failure in sending data.

17-02-2025

4. Simulate and Upload Sensor Data:

for _ in range(10): # Send 10 data points
 temp = round(random.uniform(20.0, 30.0), 2)
 hum = round(random.uniform(40.0, 60.0), 2)
 send_data_to_thingspeak(temp, hum)
 time.sleep(15) # ThingSpeak allows updates every 15 seconds

● Loops 10 times to simulate sending 10 data points.
● Generates random temperature values between 20.0°C and 30.0°C.
● Generates random humidity values between 40.0% and 60.0%.

● Calls send_data_to_thingspeak() to upload each data point.
● Pauses for 15 seconds between uploads to comply with ThingSpeak's rate limit.

5. Function to Retrieve Data from ThingSpeak:

def retrieve_data_from_thingspeak():
 url =
f'https://api.thingspeak.com/channels/{CHANNEL_ID}/feeds.json?api_key=
{READ_API_KEY}&results=10'
 response = requests.get(url).json()
 feeds = response['feeds']
 timestamps = [datetime.strptime(feed['created_at'], '%Y-%m-
%dT%H:%M:%SZ') for feed in feeds]
 temperatures = [float(feed['field1']) for feed in feeds]
 humidities = [float(feed['field2']) for feed in feeds]
 return timestamps, temperatures, humidities

● Constructs a URL to request the last 10 entries from the specified ThingSpeak channel
using the Read API Key.

● Sends an HTTP GET request and parses the JSON response.
● Extracts the 'feeds' data, which contains the entries.
● Processes each feed to extract:

○ timestamps : Converts the 'created_at' string to a datetime object.

○ temperatures : Retrieves and converts field1 data to float.

○ humidities : Retrieves and converts field2 data to float.
● Returns the lists of timestamps, temperatures, and humidities.

6. Retrieve and Plot Data:

timestamps, temperatures, humidities = retrieve_data_from_thingspeak()
plt.figure(figsize=(12, 6))
plt.plot(timestamps, temperatures, label='Temperature (°C)',
marker='o')

17-02-2025

plt.plot(timestamps, humidities, label='Humidity (%)', marker='s')
plt.xlabel('Time')
plt.ylabel('Value')
plt.title('IoT Sensor Data from ThingSpeak')
plt.legend()
plt.grid(True)
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()

● Calls retrieve_data_from_thingspeak() to get the latest data.
● Sets up a plot with a specified figure size.
● Plots temperature data against timestamps with circle markers.
● Plots humidity data against timestamps with square markers.
● Labels the x-axis as 'Time' and the y-axis as 'Value'.
● Titles the plot 'IoT Sensor Data from ThingSpeak'.
● Adds a legend to distinguish between temperature and humidity data.
● Enables a grid for better readability.
● Rotates x-axis labels by 45 degrees for clarity.
● Adjusts the layout to prevent clipping of labels.
● Displays the plot.

Message Flow:

1. Generate simulated sensor data.
2. Send data to ThingSpeak using HTTP requests.
3. Retrieve the latest stored data from ThingSpeak.
4. Visualize data trends using Matplotlib.

Flowchart:

Start Program ↓

Generate Simulated Sensor Data ↓

Send Data to ThingSpeak ↓

Retrieve Stored Data from ThingSpeak ↓

Visualize IoT Data ↓

End

Observation Table:

Timestamp Temperature (°C) Humidity (%) Remarks

17-02-2025

2025-02-07 10:30 25.4 52.1 Normal

2025-02-07 10:45 26.1 49.8 Normal

2025-02-07 11:00 24.8 55.3 Normal

Outcome:

Conclusion:
This experiment demonstrates how to interact with ThingSpeak’s API for IoT data handling. By
simulating sensor readings, sending them to ThingSpeak, and retrieving them for visualization,
we gain insights into real-time IoT data management. Such techniques are crucial for monitoring
applications in smart cities, healthcare, and industrial automation.

Homework Assigned:

● Task: Extend the program by adding another sensor (e.g., air pressure) and visualize its
trend.

● Hint: Use field3 in ThingSpeak API requests and update the Matplotlib plot
accordingly

Program Code :

import requests

17-02-2025

import random
import time
import matplotlib.pyplot as plt
from datetime import datetime

WRITE_API_KEY = "2BP633L92JHJRV62"
READ_API_KEY = "52YPAO3SPC89EKAJ"
CHANNEL_ID = "2832723"

def send_data_to_thingspeak(temperature, humidity, pressure):
 url = f"{WRITE_URL}&field1={temperature}&field2={humidity}&field3={pressure}"
 response = requests.get(url)
 if response.status_code == 200:
 print(f"Data Sent: Temp={temperature}°C, Humidity={humidity}%,
Pressure={pressure} hPa")
 else:
 print("Failed to send data")

for _ in range(10): # Sending 10 data points
 temp = round(random.uniform(20.0, 30.0), 2)
 hum = round(random.uniform(40.0, 60.0), 2)
 pressure = round(random.uniform(900, 1100), 2)
 send_data_to_thingspeak(temp, hum, pressure)
 time.sleep(15) # ThingSpeak allows updates every 15 seconds

def retrieve_data_from_thingspeak():
 url =
f"https://api.thingspeak.com/channels/{CHANNEL_ID}/feeds.json?api_key={READ_API_
KEY}&results=10"
 response = requests.get(url).json()
 feeds = response['feeds']
 timestamps = [datetime.strptime(feed['created_at'], '%Y-%m-%dT%H:%M:%SZ') for
feed in feeds]
 temperatures = [float(feed['field1']) for feed in feeds]
 humidities = [float(feed['field2']) for feed in feeds]
 pressures = [float(feed['field3']) for feed in feeds]
 return timestamps, temperatures, humidities, pressures

timestamps, temperatures, humidities, pressures = retrieve_data_from_thingspeak()
plt.figure(figsize=(12, 6))
plt.plot(timestamps, temperatures, label='Temperature (°C)', marker='o')
plt.plot(timestamps, humidities, label='Humidity (%)', marker='s')
plt.plot(timestamps, pressures, label='Pressure (hPa)', marker='^')
plt.xlabel('Time')
plt.ylabel('Value')
plt.title('IoT Sensor Data from ThingSpeak')

17-02-2025

plt.legend()
plt.grid(True)
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()

Explanation and Logic of Code:

 The program first generates simulated sensor data for temperature, humidity, and air
pressure. This data is then sent to ThingSpeak via HTTP requests using the requests library. The
system waits for 15 seconds between each upload to comply with ThingSpeak’s API limits. Once

enough data is collected, the program retrieves the stored sensor data and visualizes it using
Matplotlib.

Message Flow :

1. Generate simulated sensor data.
2. Send data to ThingSpeak using HTTP requests.
3. Retrieve the latest stored data from ThingSpeak.
4. Visualize data trends using Matplotlib.

Output Screenshot :

Flowchart :

Start Program
 ↓
Generate Simulated Sensor Data
 ↓
Send Data to ThingSpeak
 ↓
Retrieve Stored Data from ThingSpeak
 ↓
Visualize IoT Data
 ↓

17-02-2025

End
``` 

 
Conclusion : 
 
 This experiment demonstrates the capability of ThingSpeak to handle IoT sensor data 
efficiently.  By  integrating  temperature,  humidity,  and  air  pressure  sensors,  we  gain  valuable 
insights into real-time monitoring. This approach is widely applicable in smart cities, industrial 
automation, and environmental monitoring, where cloud-based data visualization is essential for 
decision-making. 
 

 

 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9

