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Experiment 5
AIM: To simulate edge data processing and filtering.

Objective: Process simulated IoT sensor data using basic filtering techniques.

Tools Used: Google Colab, Python (pandas, numpy)

Theory: The Internet of Things (IoT) enables devices to generate and transmit data that can be
processed at the edge before being sent to cloud storage or analytics platforms. Edge data
processing involves filtering and preprocessing sensor data to remove noise, outliers, or irrelevant
information, ensuring that only meaningful data is stored or transmitted.

Basic filtering techniques include:

● Moving Average Filter: This filter smooths data by replacing each data point with the 
average of its neighboring values over a defined window size. It is useful for reducing 
random fluctuations and noise in data while maintaining trends. However, it may 
introduce a lag in rapidly changing signals.

● Median Filter: The median filter removes noise by replacing each data point with the 
median of its neighbors within a window. It is particularly effective for reducing impulsive 
noise (e.g., sudden spikes or drops) while preserving edges in the data. Unlike the 
moving average filter, it does not blur sharp changes.

● Threshold-Based Filtering: This technique discards values that fall outside a 
predefined range, ensuring that only meaningful and realistic sensor readings are 
retained. For instance, if temperature values are expected to be between 20°C and 
30°C, any values outside this range are removed. This filter is useful for eliminating 
outliers caused by sensor malfunctions or extreme environmental conditions.

● Kalman Filter: A probabilistic filtering technique that estimates the true state of a noisy 
process by minimizing the error in measurements over time. It works by predicting the 
next state based on previous measurements and then updating the estimate using the 
actual observed value. Kalman filtering is widely used in real-time signal processing, 
robotics, and navigation due to its ability to handle noisy and uncertain data effectively.

In this  experiment,  simulated IoT  sensor  data (such  as  temperature and humidity) will  be
generated   and   processed   using   these   techniques.   The   objective   is   to   analyze   how   edge
processing can improve data quality before transmission to a cloud-based system.

Program Code:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

# Simulated Sensor Data Generation
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def generate_sensor_data(n=100):
    np.random.seed(42)
    temperature = np.random.normal(25, 2, n)  # Mean 25C, Std Dev 2
    humidity = np.random.normal(50, 5, n)  # Mean 50%, Std Dev 5
    return pd.DataFrame({'Temperature': temperature, 'Humidity': humidity})

# Moving Average Filter
def moving_average_filter(data, window_size=5):
    return data.rolling(window=window_size, center=True).mean()

# Median Filter
def median_filter(data, window_size=5):
    return data.rolling(window=window_size, center=True).median()

# Threshold-Based Filtering
def threshold_filter(data, temp_range=(20, 30), hum_range=(40, 60)):
    filtered_data = data[(data['Temperature'].between(*temp_range)) & 
(data['Humidity'].between(*hum_range))]
    return filtered_data

# Generate Sensor Data
data = generate_sensor_data()

# Apply Filters
smoothed_data = moving_average_filter(data)
median_filtered_data = median_filter(data)
thresh_filtered_data = threshold_filter(data)

# Plot Results
plt.figure(figsize=(10, 5))
plt.plot(data['Temperature'], label='Raw Temperature', linestyle='dotted')
plt.plot(smoothed_data['Temperature'], label='Smoothed Temperature (Moving Avg)')
plt.plot(median_filtered_data['Temperature'], label='Median Filtered Temperature')
plt.xlabel("Sample")
plt.ylabel("Temperature (°C)")
plt.legend()
plt.title("Temperature Data Filtering")
plt.show()

Explanation of LOGIC:

1. Sensor Data Simulation: Random values for temperature (25°C ± 2) and humidity 
(50% ± 5) are generated to mimic real IoT sensor readings.

2. Moving Average Filtering: Averages neighboring values to smooth out fluctuations.
3. Median Filtering: Uses the median of a window to remove extreme outliers.
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4. Threshold Filtering: Removes values outside defined temperature (20–30°C) and 
humidity (40–60%) ranges.

5. Visualization: The raw and filtered data are plotted to analyze the effect of each filtering
method.

Message Flow:

1. Generate simulated sensor data.
2. Apply moving average, median, and threshold filters.
3. Compare the effects of filtering techniques through visualization.

Observation Table:

Sampl
e

Raw
Temperature

(°C)

Smoothed
Temperature (°C)

Median Filtered
Temperature (°C)

Threshold Filtered
Temperature (°C)

1 24.5 24.7 24.6 24.5

2 26.1 25.8 25.9 26.1

3 22.8 23.5 23.4 22.8

4 29.3 27.6 27.8 -

Outcome:
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Explain the graph in few lines

Conclusion: By implementing filtering techniques at the edge, we can enhance the quality of 
sensor data before it reaches cloud-based analytics platforms. Moving average and median 
filters are effective in smoothing data, while threshold filtering ensures only relevant data is 
processed. Such approaches are essential for real-world IoT applications, including smart cities,
healthcare monitoring, and industrial automation.

Homework Assigned: Task: Extend the program by adding another filtering technique (e.g., 
Kalman filter) and compare its effectiveness. Hint: Implement the Kalman filter using Python’s 
filterpy library and visualize the results alongside the existing filters.

Theory: The Internet of Things (IoT) enables devices to generate and transmit data that can be
processed at the edge before being sent to cloud storage or analytics platforms. Edge data
processing involves filtering and preprocessing sensor data to remove noise, outliers, or irrelevant
information, ensuring that only meaningful data is stored or transmitted.

Basic filtering techniques include:

● Moving Average Filter: This filter smooths data by replacing each data point with the 
average of its neighboring values over a defined window size. It is useful for reducing 
random fluctuations and noise in data while maintaining trends. However, it may 
introduce a lag in rapidly changing signals.

● Median Filter: The median filter removes noise by replacing each data point with the 
median of its neighbors within a window. It is particularly effective for reducing impulsive 
noise (e.g., sudden spikes or drops) while preserving edges in the data. Unlike the 
moving average filter, it does not blur sharp changes.

● Threshold-Based Filtering: This technique discards values that fall outside a 
predefined range, ensuring that only meaningful and realistic sensor readings are 
retained. For instance, if temperature values are expected to be between 20°C and 
30°C, any values outside this range are removed. This filter is useful for eliminating 
outliers caused by sensor malfunctions or extreme environmental conditions.

● Kalman Filter: A probabilistic filtering technique that estimates the true state of a noisy 
process by minimizing the error in measurements over time. It works by predicting the 
next state based on previous measurements and then updating the estimate using the 
actual observed value. Kalman filtering is widely used in real-time signal processing, 
robotics, and navigation due to its ability to handle noisy and uncertain data effectively.

In this  experiment,  simulated IoT  sensor  data (such  as  temperature and humidity) will  be
generated   and   processed   using   these   techniques.   The   objective   is   to   analyze   how   edge
processing can improve data quality before transmission to a cloud-based system.
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Program Code:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from filterpy.kalman import KalmanFilter

from filterpy.common import Q_discrete_white_noise

# Previous functions remain the same

def generate_sensor_data(n=100):

    np.random.seed(42)

    temperature = np.random.normal(25, 2, n)

    humidity = np.random.normal(50, 5, n)

    return pd.DataFrame({'Temperature': temperature, 'Humidity': humidity})

def moving_average_filter(data, window_size=5):

    return data.rolling(window=window_size, center=True).mean()

def median_filter(data, window_size=5):

    return data.rolling(window=window_size, center=True).median()

def threshold_filter(data, temp_range=(20, 30), hum_range=(40, 60)):

    filtered_data = data[(data['Temperature'].between(*temp_range)) &

                        (data['Humidity'].between(*hum_range))]

    return filtered_data

# New Kalman filter implementation

def setup_kalman_filter():

    kf = KalmanFilter(dim_x=2, dim_z=1)  # State: [position, velocity], Measurement: position

    dt = 1.0  # time step

       # State transition matrix
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    kf.F = np.array([[1., dt],

                     [0., 1.]])

    # Measurement matrix

    kf.H = np.array([[1., 0.]])

       # Measurement noise

    kf.R = np.array([[0.5]])  # Measurement noise variance

    # Process noise

    kf.Q = Q_discrete_white_noise(dim=2, dt=dt, var=0.13)

       # Initial state

    kf.x = np.array([[0.],  # Initial position

                     [0.]])  # Initial velocity

       # Initial state covariance

    kf.P = np.array([[1., 0.],

                     [0., 1.]])

    return kf

def kalman_filter(data):

    kf = setup_kalman_filter()

    filtered_data = np.zeros(len(data))

    for i, measurement in enumerate(data):

        kf.predict()

        kf.update(measurement)

        filtered_data[i] = kf.x[0]

    return filtered_data

# Generate and process data

np.random.seed(42)
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data = generate_sensor_data()

smoothed_data = moving_average_filter(data)

median_filtered_data = median_filter(data)

kalman_filtered_temp = kalman_filter(data['Temperature'].values)

# Visualization

plt.figure(figsize=(12, 8))

# Plot 1: Temperature

plt.subplot(2, 1, 1)

plt.plot(data['Temperature'], 'gray', alpha=0.5, label='Raw Temperature', linestyle='dotted')

plt.plot(smoothed_data['Temperature'], 'b', label='Moving Average', alpha=0.7)

plt.plot(median_filtered_data['Temperature'], 'g', label='Median Filter', alpha=0.7)

plt.plot(kalman_filtered_temp, 'r', label='Kalman Filter', alpha=0.7)

plt.ylabel('Temperature (°C)')

plt.title('Comparison of Different Filtering Techniques')

plt.legend()

plt.grid(True, alpha=0.3)

# Plot 2: Error Analysis

plt.subplot(2, 1, 2)

mae_ma = np.abs(data['Temperature'] - smoothed_data['Temperature']).mean()

mae_median = np.abs(data['Temperature'] - median_filtered_data['Temperature']).mean()

mae_kalman = np.abs(data['Temperature'] - kalman_filtered_temp).mean()

errors = [mae_ma, mae_median, mae_kalman]

plt.bar(['Moving Average', 'Median Filter', 'Kalman Filter'],

        errors,

        color=['blue', 'green', 'red'],
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        alpha=0.6)

plt.ylabel('Mean Absolute Error')

plt.title('Error Analysis of Different Filters')

plt.tight_layout()

plt.show()

# Print error metrics

print("\nError Analysis:")

print(f"Moving Average MAE: {mae_ma:.3f}°C")

print(f"Median Filter MAE: {mae_median:.3f}°C")

print(f"Kalman Filter MAE: {mae_kalman:.3f}°C")

Observation Table :
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Outcome:

Explanation of LOGIC:

1. Added a Kalman filter implementation:

   - Uses a 2D state vector (position and velocity)

   - Includes process and measurement noise modeling

   - Handles both prediction and update steps

2. Enhanced visualization:

   - Split the visualization into two subplots
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   - Added all filters to the same plot for easy comparison

   - Created an error analysis bar chart

3. Added quantitative comparison:

   - Calculates Mean Absolute Error (MAE) for each filter

   - Displays error metrics for easy comparison

The Kalman filter has several advantages over the other methods:

- It takes into account both the system dynamics and measurement uncertainty

- It can handle noisy data while maintaining responsiveness

- It provides smoother output compared to simple moving average or median filters

Explain the graph in few lines

Conclusion:

By implementing filtering techniques at the edge, we can enhance the quality of sensor data 
before it reaches cloud-based analytics platforms. Moving average and median filters are 
effective in smoothing data, while threshold filtering ensures only relevant data is processed. 
Such approaches are essential for real-world IoT applications, including smart cities, healthcare 
monitoring, and industrial automation.
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