

1
Date : 17 February, 2025

Experiment 5
AIM: To simulate edge data processing and filtering.

Objective: Process simulated IoT sensor data using basic filtering techniques.

Tools Used: Google Colab, Python (pandas, numpy)

Theory: The Internet of Things (IoT) enables devices to generate and transmit data that can be
processed at the edge before being sent to cloud storage or analytics platforms. Edge data
processing involves filtering and preprocessing sensor data to remove noise, outliers, or irrelevant
information, ensuring that only meaningful data is stored or transmitted.

Basic filtering techniques include:

● Moving Average Filter: This filter smooths data by replacing each data point with the
average of its neighboring values over a defined window size. It is useful for reducing
random fluctuations and noise in data while maintaining trends. However, it may
introduce a lag in rapidly changing signals.

● Median Filter: The median filter removes noise by replacing each data point with the
median of its neighbors within a window. It is particularly effective for reducing impulsive
noise (e.g., sudden spikes or drops) while preserving edges in the data. Unlike the
moving average filter, it does not blur sharp changes.

● Threshold-Based Filtering: This technique discards values that fall outside a
predefined range, ensuring that only meaningful and realistic sensor readings are
retained. For instance, if temperature values are expected to be between 20°C and
30°C, any values outside this range are removed. This filter is useful for eliminating
outliers caused by sensor malfunctions or extreme environmental conditions.

● Kalman Filter: A probabilistic filtering technique that estimates the true state of a noisy
process by minimizing the error in measurements over time. It works by predicting the
next state based on previous measurements and then updating the estimate using the
actual observed value. Kalman filtering is widely used in real-time signal processing,
robotics, and navigation due to its ability to handle noisy and uncertain data effectively.

In this experiment, simulated IoT sensor data (such as temperature and humidity) will be
generated and processed using these techniques. The objective is to analyze how edge
processing can improve data quality before transmission to a cloud-based system.

Program Code:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

Simulated Sensor Data Generation

2
Date : 17 February, 2025

def generate_sensor_data(n=100):
 np.random.seed(42)
 temperature = np.random.normal(25, 2, n) # Mean 25C, Std Dev 2
 humidity = np.random.normal(50, 5, n) # Mean 50%, Std Dev 5
 return pd.DataFrame({'Temperature': temperature, 'Humidity': humidity})

Moving Average Filter
def moving_average_filter(data, window_size=5):
 return data.rolling(window=window_size, center=True).mean()

Median Filter
def median_filter(data, window_size=5):
 return data.rolling(window=window_size, center=True).median()

Threshold-Based Filtering
def threshold_filter(data, temp_range=(20, 30), hum_range=(40, 60)):
 filtered_data = data[(data['Temperature'].between(*temp_range)) &
(data['Humidity'].between(*hum_range))]
 return filtered_data

Generate Sensor Data
data = generate_sensor_data()

Apply Filters
smoothed_data = moving_average_filter(data)
median_filtered_data = median_filter(data)
thresh_filtered_data = threshold_filter(data)

Plot Results
plt.figure(figsize=(10, 5))
plt.plot(data['Temperature'], label='Raw Temperature', linestyle='dotted')
plt.plot(smoothed_data['Temperature'], label='Smoothed Temperature (Moving Avg)')
plt.plot(median_filtered_data['Temperature'], label='Median Filtered Temperature')
plt.xlabel("Sample")
plt.ylabel("Temperature (°C)")
plt.legend()
plt.title("Temperature Data Filtering")
plt.show()

Explanation of LOGIC:

1. Sensor Data Simulation: Random values for temperature (25°C ± 2) and humidity
(50% ± 5) are generated to mimic real IoT sensor readings.

2. Moving Average Filtering: Averages neighboring values to smooth out fluctuations.
3. Median Filtering: Uses the median of a window to remove extreme outliers.

3
Date : 17 February, 2025

4. Threshold Filtering: Removes values outside defined temperature (20–30°C) and
humidity (40–60%) ranges.

5. Visualization: The raw and filtered data are plotted to analyze the effect of each filtering
method.

Message Flow:

1. Generate simulated sensor data.
2. Apply moving average, median, and threshold filters.
3. Compare the effects of filtering techniques through visualization.

Observation Table:

Sampl
e

Raw
Temperature

(°C)

Smoothed
Temperature (°C)

Median Filtered
Temperature (°C)

Threshold Filtered
Temperature (°C)

1 24.5 24.7 24.6 24.5

2 26.1 25.8 25.9 26.1

3 22.8 23.5 23.4 22.8

4 29.3 27.6 27.8 -

Outcome:

4
Date : 17 February, 2025

Explain the graph in few lines

Conclusion: By implementing filtering techniques at the edge, we can enhance the quality of
sensor data before it reaches cloud-based analytics platforms. Moving average and median
filters are effective in smoothing data, while threshold filtering ensures only relevant data is
processed. Such approaches are essential for real-world IoT applications, including smart cities,
healthcare monitoring, and industrial automation.

Homework Assigned: Task: Extend the program by adding another filtering technique (e.g.,
Kalman filter) and compare its effectiveness. Hint: Implement the Kalman filter using Python’s
filterpy library and visualize the results alongside the existing filters.

Theory: The Internet of Things (IoT) enables devices to generate and transmit data that can be
processed at the edge before being sent to cloud storage or analytics platforms. Edge data
processing involves filtering and preprocessing sensor data to remove noise, outliers, or irrelevant
information, ensuring that only meaningful data is stored or transmitted.

Basic filtering techniques include:

● Moving Average Filter: This filter smooths data by replacing each data point with the
average of its neighboring values over a defined window size. It is useful for reducing
random fluctuations and noise in data while maintaining trends. However, it may
introduce a lag in rapidly changing signals.

● Median Filter: The median filter removes noise by replacing each data point with the
median of its neighbors within a window. It is particularly effective for reducing impulsive
noise (e.g., sudden spikes or drops) while preserving edges in the data. Unlike the
moving average filter, it does not blur sharp changes.

● Threshold-Based Filtering: This technique discards values that fall outside a
predefined range, ensuring that only meaningful and realistic sensor readings are
retained. For instance, if temperature values are expected to be between 20°C and
30°C, any values outside this range are removed. This filter is useful for eliminating
outliers caused by sensor malfunctions or extreme environmental conditions.

● Kalman Filter: A probabilistic filtering technique that estimates the true state of a noisy
process by minimizing the error in measurements over time. It works by predicting the
next state based on previous measurements and then updating the estimate using the
actual observed value. Kalman filtering is widely used in real-time signal processing,
robotics, and navigation due to its ability to handle noisy and uncertain data effectively.

In this experiment, simulated IoT sensor data (such as temperature and humidity) will be
generated and processed using these techniques. The objective is to analyze how edge
processing can improve data quality before transmission to a cloud-based system.

5
Date : 17 February, 2025

Program Code:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from filterpy.kalman import KalmanFilter

from filterpy.common import Q_discrete_white_noise

Previous functions remain the same

def generate_sensor_data(n=100):

 np.random.seed(42)

 temperature = np.random.normal(25, 2, n)

 humidity = np.random.normal(50, 5, n)

 return pd.DataFrame({'Temperature': temperature, 'Humidity': humidity})

def moving_average_filter(data, window_size=5):

 return data.rolling(window=window_size, center=True).mean()

def median_filter(data, window_size=5):

 return data.rolling(window=window_size, center=True).median()

def threshold_filter(data, temp_range=(20, 30), hum_range=(40, 60)):

 filtered_data = data[(data['Temperature'].between(*temp_range)) &

 (data['Humidity'].between(*hum_range))]

 return filtered_data

New Kalman filter implementation

def setup_kalman_filter():

 kf = KalmanFilter(dim_x=2, dim_z=1) # State: [position, velocity], Measurement: position

 dt = 1.0 # time step

 # State transition matrix

6
Date : 17 February, 2025

 kf.F = np.array([[1., dt],

 [0., 1.]])

 # Measurement matrix

 kf.H = np.array([[1., 0.]])

 # Measurement noise

 kf.R = np.array([[0.5]]) # Measurement noise variance

 # Process noise

 kf.Q = Q_discrete_white_noise(dim=2, dt=dt, var=0.13)

 # Initial state

 kf.x = np.array([[0.], # Initial position

 [0.]]) # Initial velocity

 # Initial state covariance

 kf.P = np.array([[1., 0.],

 [0., 1.]])

 return kf

def kalman_filter(data):

 kf = setup_kalman_filter()

 filtered_data = np.zeros(len(data))

 for i, measurement in enumerate(data):

 kf.predict()

 kf.update(measurement)

 filtered_data[i] = kf.x[0]

 return filtered_data

Generate and process data

np.random.seed(42)

7
Date : 17 February, 2025

data = generate_sensor_data()

smoothed_data = moving_average_filter(data)

median_filtered_data = median_filter(data)

kalman_filtered_temp = kalman_filter(data['Temperature'].values)

Visualization

plt.figure(figsize=(12, 8))

Plot 1: Temperature

plt.subplot(2, 1, 1)

plt.plot(data['Temperature'], 'gray', alpha=0.5, label='Raw Temperature', linestyle='dotted')

plt.plot(smoothed_data['Temperature'], 'b', label='Moving Average', alpha=0.7)

plt.plot(median_filtered_data['Temperature'], 'g', label='Median Filter', alpha=0.7)

plt.plot(kalman_filtered_temp, 'r', label='Kalman Filter', alpha=0.7)

plt.ylabel('Temperature (°C)')

plt.title('Comparison of Different Filtering Techniques')

plt.legend()

plt.grid(True, alpha=0.3)

Plot 2: Error Analysis

plt.subplot(2, 1, 2)

mae_ma = np.abs(data['Temperature'] - smoothed_data['Temperature']).mean()

mae_median = np.abs(data['Temperature'] - median_filtered_data['Temperature']).mean()

mae_kalman = np.abs(data['Temperature'] - kalman_filtered_temp).mean()

errors = [mae_ma, mae_median, mae_kalman]

plt.bar(['Moving Average', 'Median Filter', 'Kalman Filter'],

 errors,

 color=['blue', 'green', 'red'],

8
Date : 17 February, 2025

 alpha=0.6)

plt.ylabel('Mean Absolute Error')

plt.title('Error Analysis of Different Filters')

plt.tight_layout()

plt.show()

Print error metrics

print("\nError Analysis:")

print(f"Moving Average MAE: {mae_ma:.3f}°C")

print(f"Median Filter MAE: {mae_median:.3f}°C")

print(f"Kalman Filter MAE: {mae_kalman:.3f}°C")

Observation Table :

9
Date : 17 February, 2025

Outcome:

Explanation of LOGIC:

1. Added a Kalman filter implementation:

 - Uses a 2D state vector (position and velocity)

 - Includes process and measurement noise modeling

 - Handles both prediction and update steps

2. Enhanced visualization:

 - Split the visualization into two subplots

10
Date : 17 February, 2025

 - Added all filters to the same plot for easy comparison

 - Created an error analysis bar chart

3. Added quantitative comparison:

 - Calculates Mean Absolute Error (MAE) for each filter

 - Displays error metrics for easy comparison

The Kalman filter has several advantages over the other methods:

- It takes into account both the system dynamics and measurement uncertainty

- It can handle noisy data while maintaining responsiveness

- It provides smoother output compared to simple moving average or median filters

Explain the graph in few lines

Conclusion:

By implementing filtering techniques at the edge, we can enhance the quality of sensor data
before it reaches cloud-based analytics platforms. Moving average and median filters are
effective in smoothing data, while threshold filtering ensures only relevant data is processed.
Such approaches are essential for real-world IoT applications, including smart cities, healthcare
monitoring, and industrial automation.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10

