
Experiment 6

AIM: To simulate basic IoT security measures.

Objective: Test IoT security vulnerabilities using Python tools.

Tools Used: Google Colab, Python libraries (hashlib)

Theory: Theory: The Internet of Things (IoT) connects a vast number of devices, making
security a crucial concern. IoT security involves protecting devices, networks, and data from
unauthorized access, breaches, and cyber threats.

Key IoT security measures include:

●​ Data Encryption: Ensures that sensitive data is protected by converting it into
unreadable text for unauthorized users. Cryptographic hashing algorithms such as
SHA-256 provide a secure way to store passwords and verify data integrity.

●​ Authentication Mechanisms: Techniques like two-factor authentication (2FA) and
device identity verification help restrict unauthorized access to IoT systems.

●​ Secure Communication Protocols: Secure protocols such as TLS and MQTT with
SSL/TLS encryption safeguard data in transit.

●​ Access Control: Role-based access control (RBAC) and strong password policies limit
exposure to unauthorized individuals.

●​ Threat Detection and Prevention: Monitoring systems can identify and prevent unusual
activities, mitigating security risks.

Understanding hashlib in Python

hashlib is a Python module that provides cryptographic hashing functions, ensuring data
integrity and security. It supports multiple hashing algorithms, including MD5, SHA-1, SHA-224,
SHA-256, SHA-384, and SHA-512.

●​ SHA-256: This is a cryptographic hash function that generates a 256-bit (32-byte) hash
value. It is widely used for data integrity and password storage.

●​ MD5: Though still available in hashlib, MD5 is not recommended for
security-sensitive applications as it is vulnerable to collision attacks.

●​ HMAC (Hashed Message Authentication Code): A method for message authentication
using a cryptographic hash function combined with a secret key.

Usage of hashlib in IoT Security

●​ Storing hashed passwords to prevent credential leaks.
●​ Verifying firmware integrity before updates.
●​ Securing communication between IoT devices by hashing messages.

Why MD5 is Not Secure?

●​ Collision Vulnerability: Two different inputs can produce the same hash, compromising
data integrity.

●​ Speed: MD5 is fast, making it vulnerable to brute-force attacks.
●​ Not Recommended for Security Applications: Avoid using MD5 for password storage,

digital signatures, or secure communications.
●​ Instead, SHA-256 or higher versions (SHA-384, SHA-512) are recommended for

secure hashing.

Program Code:
import hashlib

import random

import time

def hash_data(data):

 """Hashes input data using SHA-256 algorithm."""

 return hashlib.sha256(data.encode()).hexdigest()

def verify_hash(original_data, hashed_data):

 """Verifies whether the hash of the given data matches the stored

hash."""

 return hash_data(original_data) == hashed_data

try:

 while True:

 # Generate random IoT sensor data

 temperature = round(random.uniform(20.0, 30.0), 1)

 humidity = random.randint(40, 80)

 sensor_data = f"Temperature: {temperature}°C, Humidity:

{humidity}%"

 # Apply Hashing

 hashed_data = hash_data(sensor_data)

 verification = verify_hash(sensor_data, hashed_data)

 # Print results

 print("\nOriginal Data:", sensor_data)

 print("Hashed Data:", hashed_data)

 print("Verification Successful:", verification)

 # Pause before generating new data

 time.sleep(2)

except KeyboardInterrupt:

 print("\nProcess stopped by user.")

Explanation of LOGIC:
1.​ Simulated IoT Data: Random temperature and humidity values are generated as sensor

data.

2.​ Hashing Function: The hash_data() function converts sensor data into a SHA-256
hash for security.

3.​ Verification Function: The verify_hash() function checks if the original data's hash
matches the stored hash.

4.​ Data Protection: The hash ensures data cannot be tampered with or reversed.

5.​ Output Verification: The program displays the original data, its hash, and the
verification status.

Message Flow:

1.​ Generate random IoT sensor data.
2.​ Apply SHA-256 hashing.
3.​ Verify hash integrity.
4.​ Print results.
5.​ Repeat every 2 seconds until stopped.

Flowchart:

Start Program ↓​
Generate Simulated IoT Data ↓​
Apply SHA-256 Hashing ↓​
Verify Hashed Data ↓​
Display Secured Data ↓​
End

Observation Table:

Sample Original IoT Data Hashed Data (SHA-256) Verification
Status

1
Temperature: 29.2°C, Humidity: 52% 066b35be3f4902e234cc33659

0f1468558d89d970219619411
c79262dbf92618

Successful

2
Temperature: 21.2°C, Humidity: 57% 295124085a36a006780353e3

3fefb0aadca1cd56318773943
99507ae6d4858a1

Successful

3
Temperature: 22.2°C, Humidity: 66% cfc0ceeb85e4ce9b3dd10bdb2

3d375aa976286bc902c131d4
8a5901f55458c83

Successful

4
Temperature: 23.7°C, Humidity: 60% 9bebb84417a3f6b67931eb9b1

1450712060db4bab988877e2
42002ce3261a216

Successful

Outcome:

Conclusion:

IoT security is essential to prevent cyber threats and unauthorized access. Using encryption
techniques such as hashing helps secure transmitted and stored data. This experiment
highlights the importance of applying security measures to protect IoT ecosystems.

Homework Assigned:

AIM: To simulate basic IoT security measures using HMAC.

Objective: Test IoT security vulnerabilities using Python tools with HMAC for message
authentication.

Tools Used: Google Colab, Python libraries (hmac, hashlib)

Theory: The Internet of Things (IoT) connects numerous devices, making security a significant
concern. IoT security involves protecting data and devices from unauthorized access. HMAC

(Hashed Message Authentication Code) combines cryptographic hash functions with a secret
key to ensure both data integrity and authenticity.

Key IoT security measures with HMAC include:

●​ Data Integrity: Ensures that the message is not tampered with during transmission.
●​ Authentication: Verifies that the message is from a trusted source.
●​ Secret Key: Provides an extra layer of security compared to simple hashing.

Understanding hmac in Python: The hmac library in Python helps generate a hashed
message authentication code using cryptographic hash functions like MD5, SHA-1, or SHA-256.

Program Control :
import hashlib

import hmac

import random

import time

def generate_hmac(data, key):

 """Generates an HMAC authentication code using MD5."""

 return hmac.new(key.encode(), data.encode(), hashlib.md5).hexdigest()

def verify_hmac(data, key, received_hmac):

 """Verifies if the received HMAC matches the computed one."""

 computed_hmac = generate_hmac(data, key)

 return computed_hmac == received_hmac

def hash_data(data):

 """Hashes input data using SHA-256 algorithm."""

 return hashlib.sha256(data.encode()).hexdigest()

def generate_sensor_data():

 """Generates random sensor data for Temperature, Humidity, and

Pressure."""

 temperature = round(random.uniform(20.0, 30.0), 1)

 humidity = round(random.uniform(40.0, 70.0), 1)

 pressure = round(random.uniform(900.0, 1100.0), 1)

 return f"Temperature: {temperature}°C, Humidity: {humidity}%,

Pressure: {pressure} hPa"

secret_key = "IoT_Secret_Key"

try:

 while True:

 sensor_data = generate_sensor_data()

 hashed_data = hash_data(sensor_data)

 hmac_data = generate_hmac(sensor_data, secret_key)

 print("\nOriginal Data:", sensor_data)

 print("Hashed Data:", hashed_data)

 print("Generated HMAC:", hmac_data)

 print("Verification Successful:", verify_hmac(sensor_data,

secret_key, hmac_data))

 time.sleep(2) # Wait for 2 seconds before generating new values

except KeyboardInterrupt:

 print("\nProcess stopped by user.")

Explanation of LOGIC:

●​ Simulated IoT Data: Random temperature and humidity values are generated.
●​ HMAC Function: Uses the hmac library to generate an authentication code with MD5

and a secret key.
●​ Data Protection: Ensures both the integrity and authenticity of the data.
●​ Output Verification: Displays the original data and HMAC code.
●​ Repetition: Continuously generates new data until stopped by the user.

Message Flow:

1.​ Generate simulated IoT sensor data.
2.​ Apply HMAC with a secret key.
3.​ Display original data and HMAC.
4.​ Repeat the process.

Flowchart:

Start Program ↓

Generate Simulated IoT Data ↓

Apply HMAC ↓

Display Secured Data ↓

End

Observation Table:

Sr. No Original IOT Data Hashed Data Generated
HMAC

Verification

1 Temperature: 21.2°C,
Humidity: 51.9%,
Pressure: 939.2 hPa

0dfd43e6b70ee
aed09ad0600a4
bdf5f8d6e39c29
a11dffc7ff31103
b3debc318

3a99f39a0c18c5e
7f603e04371116f
95

Successful

2 Temperature: 27.1°C,
Humidity: 44.5%,
Pressure: 1084.2 hPa

ccb7086ab83ea
149cd23b9703a
8c6f6410a9cc86
5275a10b3e18b
511e6a00448

42bc6669222631
40ad92de495efc6
146

Successful

3 Temperature: 21.3°C,
Humidity: 61.5%,
Pressure: 1045.5 hPa

7b837145272b2
e0be2495bebdf
474588033d96a
73e5bfcae25712
c467c43843e

7b9a5bb711181c
993ec17c6e5313
e9e4

Successful

4 Temperature: 28.4°C,
Humidity: 59.0%,
Pressure: 1079.7 hPa

0b48f7adb5d5e
16e89525ca4dd
51771cef214002
227ce44c00533
eab906eac92

c25bc313b3c1d4
886d2ce83f9bbab
fea

Successful

Outcome :

Conclusion: Implementing HMAC helps secure IoT data by verifying its authenticity and
integrity. This experiment highlights how secret keys and cryptographic hashing enhance IoT
security.

	Understanding hashlib in Python
	Usage of hashlib in IoT Security
	
	
	
	
	Why MD5 is Not Secure?
	Program Code:
	Explanation of LOGIC:
	Message Flow:
	Flowchart:
	Observation Table:
	Outcome:
	Conclusion:
	Homework Assigned:
	Observation Table:

