Experiment 6

AIM: To simulate basic loT security measures.

Objective: Test loT security vulnerabilities using Python tools.

Tools Used: Google Colab, Python libraries (hashlib)

Theory: Theory: The Internet of Things (loT) connects a vast number of devices, making
security a crucial concern. loT security involves protecting devices, networks, and data from
unauthorized access, breaches, and cyber threats.

Key loT security measures include:

Data Encryption: Ensures that sensitive data is protected by converting it into
unreadable text for unauthorized users. Cryptographic hashing algorithms such as
SHA-256 provide a secure way to store passwords and verify data integrity.
Authentication Mechanisms: Techniques like two-factor authentication (2FA) and
device identity verification help restrict unauthorized access to loT systems.

Secure Communication Protocols: Secure protocols such as TLS and MQTT with
SSL/TLS encryption safeguard data in transit.

Access Control: Role-based access control (RBAC) and strong password policies limit
exposure to unauthorized individuals.

Threat Detection and Prevention: Monitoring systems can identify and prevent unusual
activities, mitigating security risks.

Understanding hashlib in Python

hashlib is a Python module that provides cryptographic hashing functions, ensuring data
integrity and security. It supports multiple hashing algorithms, including MD5, SHA-1, SHA-224,
SHA-256, SHA-384, and SHA-512.

SHA-256: This is a cryptographic hash function that generates a 256-bit (32-byte) hash
value. It is widely used for data integrity and password storage.

MDS5: Though still available in hashlib, MD5 is not recommended for
security-sensitive applications as it is vulnerable to collision attacks.

HMAC (Hashed Message Authentication Code): A method for message authentication
using a cryptographic hash function combined with a secret key.

Usage of hashlib in loT Security

Storing hashed passwords to prevent credential leaks.
Verifying firmware integrity before updates.
Securing communication between IoT devices by hashing messages.

Why MDS5 is Not Secure?

e Collision Vulnerability: Two different inputs can produce the same hash, compromising
data integrity.
Speed: MD5 is fast, making it vulnerable to brute-force attacks.
Not Recommended for Security Applications: Avoid using MD5 for password storage,
digital signatures, or secure communications.
Instead, SHA-256 or higher versions (SHA-384, SHA-512) are recommended for
secure hashing.

Program Code:
import hashlib
import random

import time

hash data (data) :
"""Hashes input data using SHA-256 algorithm."""
return hashlib.sha256 (data.encode ()) .hexdigest ()

verify hash(original data, hashed data):
"""Verifies whether the hash of the given data matches the stored
hash' mwmn

return hash data(original data) == hashed data

temperature = round(random.uniform(20.0, 30.0), 1)
humidity = random.randint (40, 80)
sensor data = f"Temperature: {temperature}®C, Humidity:

{humidity}s"

hashed data hash data (sensor data)

verification = verify hash (sensor data, hashed data)

print ("\nOriginal Data:", sensor data)
print ("Hashed Data:", hashed data)

print ("Verification Successful:", verification)

time.sleep(2)
except KeyboardInterrupt:

print ("\nProcess stopped by user.")

Explanation of LOGIC:

1. Simulated loT Data: Random temperature and humidity values are generated as sensor
data.

2. Hashing Function: The hash_data() function converts sensor data into a SHA-256
hash for security.

3. Verification Function: The verify_hash() function checks if the original data's hash
matches the stored hash.

4. Data Protection: The hash ensures data cannot be tampered with or reversed.

5. Output Verification: The program displays the original data, its hash, and the
verification status.

Message Flow:

Generate random IoT sensor data.
Apply SHA-256 hashing.

Verify hash integrity.

Print results.

Repeat every 2 seconds until stopped.

abrowbd -~

Flowchart:

Start Program |

Generate Simulated loT Data |
Apply SHA-256 Hashing |
Verify Hashed Data |

Display Secured Data |

End

Observation Table:

Sample Original loT Data Hashed Data (SHA-256) Verification
Status

Temperature: 29.2°C, Humidity: 52% 066b35be3f4902e234cc33659

1 0f1468558d89d970219619411 | Successful
c79262dbf92618
Temperature: 21.2°C, Humidity: 57% 295124085a36a006780353e3
2 3fefbO0aadcalcd56318773943 | Successful
99507ae6d4858a1

Temperature: 22.2°C, Humidity: 66% cfcOceeb85e4ce9b3dd10bdb2
3 3d375a2a976286bc902¢131d4 | Successful
8a5901f55458¢c83

Temperature: 23.7°C, Humidity: 60% 9bebb84417a3f6b67931eb9b1
4 1450712060db4bab988877e2 | Successful
42002ce3261a216

Outcome:

Original Data: Temperature: 29.2°C, Humidity: 52%
Hashed Data: 866b35be3f4962e234cc3365981T1468558d89d976219619411c79262db192618
Verification Successful: True

Original Data: Temperature: 21.2°C, Humidity: 57%
Hashed Data: 295124885a36a006780353e33TefbBaadcalcd56318773943995087 achd4858al
Verification Successful: True

Original Data: Temperature: 22_.2°C, Humidity: 66%
Hashed Data: cfcBceeb85ed4ce9b3dd18bdb23d375a2a976286bc9092c131d448a5901155458c83
Verification Successful: True

Original Data: Temperature: 23_.7°C, Humidity: 68%
Hashed Data: 9bebb84417a3t6b67931eb9b1145%87120608dbAbab988877e242002ce3261a216
Verification Successful: True

Original Data: Temperature: 21.2°C, Humidity: 57%
Hashed Data: 295124885a36a006780353e33TefbPaadcalcd5631877394399507 acbd4858al
Verification Successful: True

Original Data: Temperature: 26.8°C, Humidity: 55%
Hashed Data: 38f68e97271090a567d2d3835646c90e8f57cdactbeccaf3bea3edfa8dalbdbl
Verification Successful: True

Process stopped by user.

Conclusion:

loT security is essential to prevent cyber threats and unauthorized access. Using encryption
techniques such as hashing helps secure transmitted and stored data. This experiment
highlights the importance of applying security measures to protect loT ecosystems.

Homework Assigned:

AIM: To simulate basic loT security measures using HMAC.

Objective: Test loT security vulnerabilities using Python tools with HMAC for message
authentication.

Tools Used: Google Colab, Python libraries (hmac, hashlib)

Theory: The Internet of Things (IoT) connects numerous devices, making security a significant
concern. loT security involves protecting data and devices from unauthorized access. HMAC

(Hashed Message Authentication Code) combines cryptographic hash functions with a secret
key to ensure both data integrity and authenticity.

Key loT security measures with HMAC include:

e Data Integrity: Ensures that the message is not tampered with during transmission.
e Authentication: Verifies that the message is from a trusted source.
e Secret Key: Provides an extra layer of security compared to simple hashing.

Understanding hmac in Python: The hmac library in Python helps generate a hashed
message authentication code using cryptographic hash functions like MD5, SHA-1, or SHA-256.

Program Control :
import hashlib

import hmac
import random

import time

def generate hmac(data, key):
"""Generates an HMAC authentication code using MD5."""

return hmac.new(key.encode (), data.encode(), hashlib.md5) .hexdigest ()

def verify hmac(data, key, received hmac):
"""Verifies if the received HMAC matches the computed one."""
computed hmac = generate hmac(data, key)

return computed hmac == received hmac

def hash data(data):
"""Hashes input data using SHA-256 algorithm."""
return hashlib.sha256 (data.encode ()) .hexdigest ()

def generate sensor data():

"""Generates random sensor data for Temperature, Humidity, and
Pressure."""

temperature = round(random.uniform(20.0, 30.0), 1)

humidity = round(random.uniform(40.0, 70.0), 1)

pressure = round(random.uniform(900.0, 1100.0), 1)

return f"Temperature: {temperature}®C, Humidity: {humidity}$%,

Pressure: {pressure} hPa"

secret key = "IoT Secret Key"
try:
while True:
sensor_data = generate_ sensor_ data()
hashed data = hash data(sensor_data)

hmac_data = generate hmac(sensor_data, secret key)

print ("\nOriginal Data:", sensor_data)

print ("Hashed Data:", hashed data)
print ("Generated HMAC:", hmac_data)

print ("Verification Successful:", verify hmac(sensor_data,

secret key, hmac_data))

time.sleep(2)
except KeyboardInterrupt:

print ("\nProcess stopped by user.")

Explanation of LOGIC:

Simulated loT Data: Random temperature and humidity values are generated.
HMAC Function: Uses the hmac library to generate an authentication code with MD5
and a secret key.

Data Protection: Ensures both the integrity and authenticity of the data.

Output Verification: Displays the original data and HMAC code.

Repetition: Continuously generates new data until stopped by the user.

Message Flow:

1. Generate simulated loT sensor data.
2. Apply HMAC with a secret key.

3. Display original data and HMAC.

4. Repeat the process.

Flowchart:

Start Program |

Generate Simulated loT Data |
Apply HMAC |

Display Secured Data |

End

Observation Table:

Sr. No | Original IOT Data Hashed Data Generated Verification
HMAC

1 Temperature: 21.2°C, 0dfd43e6b70ee | 3a99f39a0c18c5e | Successful
Humidity: 51.9%, aed09ad0600a4 | 7f603e04371116f
Pressure: 939.2 hPa bdf5f8d6e39¢c29 |95
a11dffc7ff31103
b3debc318
2 Temperature: 27.1°C, ccb7086ab83ea | 42bc6669222631 | Successful
Humidity: 44.5%, 149¢d23b9703a | 40ad92de495efc6
Pressure: 1084.2 hPa 8c6f6410a9cc86 | 146
5275a10b3e18b
511e6a00448
3 Temperature: 21.3°C, 7b837145272b2 | 7b9abbb711181¢c | Successful
Humidity: 61.5%, e0be2495bebdf |[993ec17c6e5313
Pressure: 1045.5 hPa 474588033d96a | e9e4
73e5bfcae25712
c467c43843e
4 Temperature: 28.4°C, Ob48f7adb5d5e | c25bc313b3c1d4 | Successful
Humidity: 59.0%, 16e89525ca4dd | 886d2ce83f9bbab
Pressure: 1079.7 hPa 51771cef214002 | fea
227ce44c00533
eab906eac92

Outcome :

Original Data: Temperature: 21.2°C, Humidity: 51.9%, Pressure: 939.2 hPa
Hashed Data: 8dfd43e6b7B8ecaeddfadB6fBaldbdf5T8d6e39c29al1dfc7131183b3debc318
Generated HMAC: 3a399139aBc18c5e71603e84371116195

Verification Successful: True

Original Data: Temperature: 27.1°C, Humidity: 44.5%, Pressure: 1884.2 hPa
Hashed Data: ccb7086ab83eald9cd23b9783a8c616418a9ccB865275a18b3e18b511e6abba4s
Generated HMAC: 42bchb6922263140ad92ded95eTchl4b

Verification Successful: True

Original Data: Temperature: 21.3°C, Humidity: 61.5%, Pressure: 1845.5 hPa
Hashed Data: 7b837145272b2eBbe2495bebdf474588033d96a73e5bfcae25712c467c43843
Generated HMAC: 7b9a5bb711181c993ecl/cbe5313e9e4

Verification Successful: True

Original Data: Temperature: 28.4°C, Humidity: 59.8%, Pressure: 1079.7 hPa
Hashed Data: 8b48f7adb5d5el16e89525caddd51771cef214002227 ceddcBB533eab9Bbeac92
Generated HMAC: ¢25bc313b3c1d4886d2ce83T9babfea

Verification Successful: True

Original Data: Temperature: 26.8°C, Humidity: 55.9%, Pressure: 1020.4 hPa
Hashed Data: 3661c99c33ee9d98d48bBbl11725af38548cTe82009d610dc94bd3dabada89bb6
Generated HMAC: 8387ab%acedfab75e22ceed52a51e692

Verification Successful: True

Process stopped by user.

Conclusion: Implementing HMAC helps secure |oT data by verifying its authenticity and
integrity. This experiment highlights how secret keys and cryptographic hashing enhance loT
security.

	Understanding hashlib in Python
	Usage of hashlib in IoT Security
	
	
	
	
	Why MD5 is Not Secure?
	Program Code:
	Explanation of LOGIC:
	Message Flow:
	Flowchart:
	Observation Table:
	Outcome:
	Conclusion:
	Homework Assigned:
	Observation Table:

