

IOT Programming(EC0625)

Page 1 of 14

Experiment - 7

Aim: To develop a simple IoT-based device control system using Flask as a
web framework and ngrok for exposing the local server to the internet,
allowing remote control of an LED-like device.

Objectives

● To implement a web-based interface for controlling an IoT device (LED).
● To use Flask to create a lightweight API for device control.
● To expose the local Flask server to the internet using ngrok.
● To enable remote control of the device via API calls.

Tools Used

● Python (Version 3.x)
● Flask (for creating the web server)
● ngrok (for exposing Flask to the internet)
● pip (Python package manager)
● Web Browser (for testing API)
● Postman (optional, for API testing)
● Command Prompt/Terminal (for running the server)

Theory

Introduction to IoT and Web-based Control

The Internet of Things (IoT) enables physical devices, such as sensors and actuators, to be
controlled remotely via the internet. In this experiment, we simulate an IoT device (an
LED) that can be turned ON or OFF using a Flask web server and control it remotely
through ngrok.

The main components of this system include:

● Flask (Python-based Web Framework): Handles HTTP requests and
processes commands.

● ngrok (Tunneling Tool): Exposes the locally running Flask application to the
public internet, allowing remote control.

● REST API (GET Requests): Allows users to send commands to control the LED state.

Why Use Flask?

IOT Programming(EC0625)

Page 2 of 14

Flask is a lightweight and easy-to-use web framework that allows:

● Handling HTTP requests efficiently.
● Creating RESTful APIs to interact with IoT devices.
● Providing JSON-based responses that can be used in mobile apps or web dashboards.

Understanding Flask API Endpoints

APIs allow external systems (e.g., web apps, mobile apps, or
othercomputers) to interact with our IoT device.

In this experiment, we define three Flask API endpoints:

Endpoint Method Description

/ GET Displays instructions on how to use the API.

/control?device=

LED &state=ON

GET Turns the LED ON.

/control?device=

LED &state=OFF

GET Turns the LED OFF.

/status GET Returns the current state of the LED.

Role of ngrok

Flask runs on a local server (127.0.0.1:5000), which is only accessible on

the local machine. To control the LED from outside the local network, we
need ngrok.

ngrok provides:

IOT Programming(EC0625)

Page 3 of 14

A Public URL for Flask Server

●Converts http://127.0.0.1:5000 →
http://your-ngrok- url.ngrok.io

●Secure Tunneling
●No need to configure firewalls or routers.
●Remote Access
●Users can send API requests from any device, anywhere in the world.

How Flask and ngrok Work Together

●Flask starts a local web server on 127.0.0.1:5000.

●ngrok creates a public URL, forwarding all requests to the Flask server.
●Users send HTTP requests (via a web browser or API tools like

Postman) to control the LED.
●Flask processes the requests and updates the LED state.
●Flask sends a response confirming the action.

Program Code cum Procedure

Step 1: Install Required Packages

Before running the program, install dependencies:

pip install flask pyngrok

Step 2: Save the Flask Code as app.py

code :

from flask import Flask, request, jsonify

app = Flask(name)

device_state = {"LED": "OFF"} # Initial state of the

virtual IoT device @app.route('/')

def home():

return "<h1>IoT Device Control</h1><p>Use

/control?device=LED&state=ON to control the device.</p>"

@app.route('/control', methods=['GET'])

def control_device():

device = request.args.get('device')

state = request.args.get('state')

if device in device_state and state in

["ON", "OFF"]: device_state[device] =

state

IOT Programming(EC0625)

Page 4 of 14

return jsonify({"message": f"{device} turned

{state}"}) else:

return jsonify({"error": "Invalid device

or state"}) @app.route('/status',

methods=['GET'])

def device_status():

return jsonify(device_state)

if name == ' main ':

app.run(host='0.0.0.0', port=5000)

Step 3: Run Flask Server
Open Command Prompt (Windows) or Terminal (Linux/Mac) and navigate

to the directory where app.py is saved:

python app.py

Output:

Running on http://127.0.0.1:5000/

Step 4: Start ngrok
In a new terminal window, run:

ngrok http 5000

It will generate a public URL, e.g.:

http://your-ngrok-url.ngrok.io -> http://127.0.0.1:5000

Step 5: Test the API
Use your browser or Postman to access the following URLs:
Home Page

http://your-ngrok-url.ngrok.io/

Expected Output:

<h1>IoT Device Control</h1><p>Use

/control?device=LED&state=ON to control the device.</p>

Turn LED ON

http://your-ngrok-url.ngrok.io/control?de

vice=LED&state=ON Expected JSON Response:

{"message": "LED turned ON"}

Turn LED OFF

http://your-ngrok-url.ngrok.io/control?dev

ice=LED&state=OFF Expected JSON Response:

{"message": "LED turned OFF"}

Check LED Status

IOT Programming(EC0625)

Page 5 of 14

http://your-ngrok-url.ngrok.io/status

Expected JSON Response:

{"LED": "ON"} # or "OFF" depending on last action

Explanation of the Program

Import Required Modules

from flask import Flask, request, jsonify

●Flask: Used to create a web server.

●request: Extracts parameters from API requests.

●jsonify: Formats responses in JSON format.

Initialize Flask App

app = Flask(name)

●Flask(name) initializes a Flask web application.

Define the LED State

device_state = {"LED": "OFF"} # Initial state of the

virtual IoT device ● A dictionary (device_state) stores the

LED's status.

●Initially, the LED is

OFF. Define the Home Route (/)

@app.route('/')

def home():

return "<h1>IoT Device Control</h1><p>Use

/control?device=LED&state=ON to control the device.</p>"

●Displays instructions for using the API when accessed.

Define the Control Route (/control)

@app.route('/control', methods=['GET'])

def control_device():

device = request.args.get('device') # Get 'device'

parameter from URL state = request.args.get('state') #

Get 'state' parameter from URL if device in device_state

and state in ["ON", "OFF"]: device_state[device] = state

Update the LED state return jsonify({"message":

f"{device} turned {state}"}) else:

return jsonify({"error": "Invalid device

or state"}) How It Works:

●Extracts device name (LED) and desired state (ON or

IOT Programming(EC0625)

Page 6 of 14

OFF) from the query parameters.

●If valid, it updates the device state and returns a
confirmation message. ● If invalid, it returns an error
message.

Example Usage:

http://127.0.0.1:5000/control?device=LED&state=ON

Response:

{"message": "LED turned ON"}

http://127.0.0.1:5000/control?device=LED&state=OFF

Response:

{"message": "LED turned OFF"}

Define the Status Route (/status)

@app.route('/status', methods=['GET'])

def device_status():

return jsonify(device_state) # Returns the current

state of the LED ● Returns the current state of the LED in JSON

format.
●Example Usage:

http://127.0.0.1:5000/status

{"LED": "ON"}

Start the Flask Server

if name == ' main ':

app.run(host='0.0.0.0', port=5000)

●Runs Flask on port 5000.
●host='0.0.0.0' allows access from any network.

Exposing Flask via ngrok
After starting Flask, we need to expose it to the internet:
Run this command in a new terminal window:

ngrok http 5000

Expected output:

Forwarding http://your-ngrok-url.ngrok.io ->

http://127.0.0.1:5000 Now, use the ngrok URL to access

the API from anywhere.

IOT Programming(EC0625)

Page 7 of 14

Expected Outputs:

IOT Programming(EC0625)

Page 8 of 14

Conclusion:
This experiment successfully demonstrates remote control of an IoT device using Flask and
ngrok. Flask provides a lightweight, easy-to-use API for controlling the LED.ngrok allows secure
remote access without configuring firewalls.This approach can be extended to control real IoT
hardware (Raspberry Pi, Arduino, ESP32, etc.).

IOT Programming(EC0625)

Page 9 of 14

Homework

Task: Extend the program by adding another virtual IoT device (e.g., a fan) and allow users
to control its state.

Objectives

●To implement a web-based interface for controlling an IoT
device (LED & FAN). ● To use Flask to create a lightweight
API for device control.
●To expose the local Flask server to the internet using ngrok.
●To enable remote control of the device via API calls.

Tools Used

●Python (Version 3.x)
●Flask (for creating the web server)
●ngrok (for exposing Flask to the internet)
●pip (Python package manager)
●Web Browser (for testing API)
●Postman (optional, for API testing)
●Command Prompt/Terminal (for running the server

Understanding Flask API Endpoints

APIs allow external systems (e.g., web apps, mobile apps, or other
computers) to interact with our IoT device.

In this experiment, we define three Flask API endpoints:

IOT Programming(EC0625)

Page 10 of 14

Endpoint Method Description

/ GET Displays instructions on how to use the API.

/control?device=

FAN &state=ON

GET Turns the FAN ON.

/control?device=

FAN &state=OFF

GET Turns the FAN OFF.

/status GET Returns the current state of the LED & FAN.

Program Code cum Procedure

Step 1: Install Required Packages

Before running the program, install dependencies:

pip install flask pyngrok

Step 2: Save the Flask Code as app.py

code :

from flask import Flask, request, jsonify

app = Flask(name)

device_state = {"LED": "OFF", "Fan": "OFF"} # Initial

state of LED and Fan @app.route('/')

def home():

return "<h1>IoT Device Control</h1><p>Use

/control?device=FAN&state=ON to control the device.</p>"

@app.route('/control', methods=['GET'])

IOT Programming(EC0625)

Page 11 of 14

def control_device():

device = request.args.get('device')

state = request.args.get('state')

if device in device_state and state in ["ON", "OFF"]:

device_state[device] = state

return jsonify({"message": f"{device} turned {state}"})

else:

return jsonify({"error": "Invalid device or state"})

@app.route('/status', methods=['GET'])

def device_status():

return jsonify(device_state)

if name == ' main ':

app.run(host='0.0.0.0', port=5000)

Step 3: Run Flask Server
Open Command Prompt (Windows) or Terminal (Linux/Mac) and navigate

to the directory where app.py is saved:

python app.py
Running on http://127.0.0.1:5000/

Step 4: Start ngrok
In a new terminal window, run:

ngrok http 5000

It will generate a public URL, e.g.:

http://your-ngrok-url.ngrok.io -> http://127.0.0.1:5000

Step 5: Test the API
Use your browser or Postman to access the following URLs:
Home Page

http://your-ngrok-url.ngrok.io/

Expected Output:

<h1>IoT Device Control</h1><p>Use

/control?device=FAN&state=ON to control the device.</p>

Turn FAN ON

http://your-ngrok-url.ngrok.io/control?device=FAN&state=ON

Expected JSON Response:

{"message": "FAN turned ON"}

Turn FAN OFF

http://your-ngrok-url.ngrok.io/control?device=FAN&state=OFF

Expected JSON Response:

IOT Programming(EC0625)

Page 12 of 14

{"message": "FAN turned OFF"}

Check FAN Status

http://your-ngrok-url.ngrok.io/status

Expected JSON Response:

{"FAN": "ON"} # or "OFF" depending on last action

Expected Outputs:

IOT Programming(EC0625)

Page 13 of 14

IOT Programming(EC0625)

Page 14 of 14

Conclusion:
This experiment successfully demonstrates remote control of an IoT device using
Flask and ngrok. Flask provides a lightweight, easy-to-use API for controlling the
LED and Fan.ngrok allows secure remote access without configuring
firewalls.This approach can be extended to control real IoT hardware (Raspberry
Pi, Arduino, ESP32, etc.).

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14

