
Experiment 8

AIM: To predict equipment failures using IoT sensor data.

Objective: Apply machine learning for predictive maintenance using Python’s scikit-learn 
library.

Tools Used: Google Colab, Python libraries (pandas, numpy, scikit-learn, matplotlib, seaborn)

Theory:

The Industrial Internet of Things (IIoT) is revolutionizing equipment maintenance by enabling real-
time monitoring of machinery using sensor data. Traditionally, maintenance approaches were 
either  reactive  (fixing   after   failure)   or  preventive  (routine   servicing   based   on   schedules). 
However, these methods often result in unexpected failures or unnecessary maintenance costs.

Predictive maintenance, powered by machine learning, aims to predict equipment failures 
before they occur. It leverages historical sensor data to identify failure patterns, thereby reducing 
downtime, increasing operational efficiency, and lowering maintenance costs.

Machine learning (ML) is a branch of artificial intelligence (AI) that enables systems to learn from 
data and make predictions without being explicitly programmed. In predictive maintenance, ML 
models analyze vast amounts of sensor data and recognize patterns that indicate potential 
failures.

Key Steps in Machine Learning for Predictive Maintenance

1. Data Collection: IoT sensors collect data such as temperature, vibration, pressure, and 
humidity.

2. Data Preprocessing: Cleaning and transforming raw data into a suitable format for training 
ML models.

3. Feature Engineering: Selecting and transforming relevant sensor readings to improve 
model performance.

4. Model Selection & Training: Choosing an appropriate machine learning model and training 
it using historical data.

5. Model Evaluation: Assessing the model’s accuracy using evaluation metrics.
6. Failure Prediction: Deploying the trained model to predict equipment failures in real-time.
7. Decision Support: Using predictions to schedule maintenance before failure occurs.

Machine Learning Models for Predictive Maintenance

Several machine learning models can be used to predict equipment failures. These models fall 
into   three   main   categories:   supervised   learning,   unsupervised   learning,   and   reinforcement 
learning.

Supervised Learning Models

Supervised learning involves training a model on labeled data, where each sensor reading is 
associated with a known failure status (0 = No Failure, 1 = Failure). The model learns the 
relationship between input features (sensor readings) and the failure status.

Classification Models (for Predicting Failures)



Since failure prediction is a binary classification problem (failure vs. no failure), the following 
models are widely used:

● Logistic Regression: A simple statistical model that estimates the probability of failure 
based on sensor readings.

● Decision Trees: A tree-like structure where each node represents a decision based on 
sensor values, leading to a failure or non-failure classification.

● Random Forest: An ensemble of multiple decision trees that improves prediction accuracy 
by averaging results.

● Support Vector Machines (SVM): A model that finds an optimal boundary (hyperplane) 
between failure and non-failure instances.

● Neural Networks: Deep learning models that learn complex patterns in sensor data, useful 
for large datasets.

Regression Models (for Predicting Remaining Useful Life)

Instead of predicting failure as a yes/no classification, regression models estimate the remaining 
useful life (RUL) of a machine:

● Linear Regression: A simple model predicting RUL based on sensor values.
● Gradient Boosting (XGBoost, LightGBM): Advanced models that combine weak learners 

to improve predictive accuracy.

Unsupervised Learning Models

Unsupervised learning is useful when labeled failure data is not available. It detects anomalies or 
patterns that deviate from normal operating conditions.

● Clustering   (K-Means,   DBSCAN):   Groups   similar   operating   states   of   machines   and 
identifies failures as outliers.

● Autoencoders   (Deep   Learning):   Learns   normal   patterns   and   flags   anomalies   when 
deviations occur.

● Principal Component Analysis (PCA): Reduces dimensionality to highlight unusual sensor 
behavior.

Reinforcement Learning (RL) for Maintenance Optimization

Reinforcement Learning (RL) models learn optimal maintenance strategies by continuously 
interacting with an environment. They balance maintenance schedules to minimize costs while 
preventing   failures.   However,   RL   is   less   common   in   predictive   maintenance   due   to   high 
computational requirements.

Feature engineering is the process of selecting and transforming raw sensor data into meaningful 
inputs for machine learning models. Important features for predictive maintenance include:

● Statistical Features: Mean, standard deviation, variance of sensor readings over time.
● Time-Series Features: Rolling averages, moving windows of sensor readings.
● Frequency-Domain Features: Fourier transforms to capture vibration patterns.
● Domain-Specific Features: Sensor thresholds based on manufacturer specifications.

Proper feature selection improves model accuracy and interpretability.

Evaluation Metrics for Predictive Maintenance Models



Once a model is trained, its effectiveness is evaluated using metrics such as:

1. Accuracy: Measures the overall correctness of predictions.
2. Precision: Percentage of correctly predicted failures among all predicted failures.
3. Recall (Sensitivity): Measures how many actual failures were correctly predicted.
4. F1-Score: Balances precision and recall for better overall performance.
5. Confusion Matrix: Shows the number of true positives, false positives, true negatives, and 

false negatives.
6. ROC-AUC Score: Measures the model’s ability to distinguish between failure and non-

failure events.

A good predictive maintenance model should have high precision and recall, minimizing false 
positives (unnecessary maintenance) and false negatives (missed failures).

  Reduced   Downtime:   Predicts   failures   in   advance,   allowing   proactive   maintenance.✔
   Cost   Savings:   Minimizes   unnecessary   servicing   and   spare   part   replacements.✔
   Increased   Equipment   Lifespan:   Detects   early   warning   signs   of   wear   and   tear.✔
  Real-time Monitoring: Continuous analysis of sensor data ensures proactive failure prevention.✔
  Scalability: Can be applied across various industries, from manufacturing to healthcare.✔

Program code:
# Import necessary libraries

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy_score, classification_report, 

confusion_matrix

# Set random seed for reproducibility

# np.random.seed(42)

# Generate dataset with 1000 samples

num_samples = 1000

# Simulate sensor readings

temperature = np.random.randint(30, 100, num_samples)  # Temperature in 

Celsius

vibration = np.round(np.random.uniform(0.1, 3.0, num_samples), 2)  # 

Vibration level

pressure = np.random.randint(50, 400, num_samples)  # Pressure in kPa

humidity = np.random.randint(20, 80, num_samples)  # Humidity in %

machine_age = np.random.randint(1, 20, num_samples)  # Machine age in 

years

# Generate failure labels (1 = Failure, 0 = No Failure) based on 

conditions

failure = np.where(



   (temperature > 80) & (vibration > 2.0) & (pressure > 300) & (humidity > 

60),

   1,  # High failure risk

   np.random.choice([0, 1], size=num_samples, p=[0.85, 0.15])  # 15% 

random failures

)

# Create DataFrame

df = pd.DataFrame({

   "Temperature": temperature,

   "Vibration": vibration,

   "Pressure": pressure,

   "Humidity": humidity,

   "Machine_Age": machine_age,

   "Failure": failure

})

# Save dataset as CSV file

csv_filename = "iot_sensor_data.csv"

df.to_csv(csv_filename, index=False)

print(f"Dataset generated and saved as '{csv_filename}' successfully!")

# Display first 5 rows of the dataset

print("\nFirst 5 rows of the dataset:")

print(df.head())

# Load dataset (if running separately)

df = pd.read_csv("iot_sensor_data.csv")

# Split dataset into features and labels

X = df.drop(columns=['Failure'])  # Features

y = df['Failure']  # Target variable

# Split into training (80%) and testing (20%) sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 

random_state=42)

# Train a Random Forest model

model = RandomForestClassifier(n_estimators=100, random_state=42)

model.fit(X_train, y_train)

# Predictions

y_pred = model.predict(X_test)

# Evaluate the model

accuracy = accuracy_score(y_test, y_pred)

print("\nModel Accuracy:", accuracy)

print("\nClassification Report:\n", classification_report(y_test, y_pred))

# Confusion Matrix Visualization

plt.figure(figsize=(5, 4))



sns.heatmap(confusion_matrix(y_test, y_pred), annot=True, fmt='d', 

cmap='Blues',

           xticklabels=['No Failure', 'Failure'], yticklabels=['No 

Failure', 'Failure'])

plt.xlabel("Predicted")

plt.ylabel("Actual")

plt.title("Confusion Matrix")

plt.show()

# Feature Importance Analysis

feature_importance = pd.Series(model.feature_importances_, 

index=X.columns).sort_values(ascending=False)

plt.figure(figsize=(8, 5))

sns.barplot(x=feature_importance, y=feature_importance.index)

plt.xlabel("Feature Importance Score")

plt.ylabel("Features")

plt.title("Feature Importance in Predictive Maintenance Model")

plt.show()

Explanation of LOGIC:

1. Load Dataset: The IoT sensor dataset is loaded for analysis.
2. Preprocessing: Missing values are handled, and features are scaled.
3. Model Selection: Random Forest is chosen for its robustness in classification tasks.
4. Training and Testing: The dataset is split, and the model is trained using training data.
5. Prediction & Evaluation: The trained model predicts failures, and accuracy is evaluated.

Message Flow:

1. Load and preprocess IoT sensor data.
2. Train a machine learning model for failure prediction.
3. Evaluate model performance using classification metrics.
4. Use predictions for preventive maintenance planning.

Flowchart:

Start Program ↓ Load and Preprocess IoT Sensor Data ↓ Train Machine Learning Model ↓ 
Predict Equipment Failures ↓ Evaluate Model Performance ↓ Deploy for Predictive Maintenance 
↓ End



Observation Tables: 



Classification Report

The classification report provides a detailed performance evaluation of a machine learning model. 
It includes precision, recall, F1-score, and support for each class (e.g., Failure vs. No Failure). 
Precision measures the proportion of correctly predicted positive cases out of all predicted 
positives, while recall (sensitivity) indicates how well the model identifies actual failures. F1-score 
is the harmonic mean of precision and recall, balancing both metrics. The macro average gives 
the unweighted mean of the scores for all classes, while the weighted average accounts for class 
imbalance by considering the number of actual instances per class.

Confusion Matrix

The confusion matrix is a table that summarizes the model's predictions compared to actual 
labels. It consists of True Positives (TP), True Negatives (TN), False Positives (FP), and False 
Negatives (FN). True Positives and True Negatives represent correctly classified instances, 
whereas False Positives (Type I Error) indicate misclassified negatives, and False Negatives 
(Type II Error) represent missed failures. The confusion matrix helps visualize model accuracy 
and highlights areas where the model may be misclassifying, allowing for targeted improvements.

Conclusion: Predictive maintenance using IoT sensor data and machine learning helps prevent 
equipment   failures,   reducing   operational   costs   and   downtime.   The   use   of   Random   Forest 
provides a robust predictive model with high accuracy, making it a valuable tool for industrial 
applications.



HOMEWORK ASSIGNMENT

AIM: To predict equipment failures using IoT sensor data.

Objective: Apply machine learning for predictive maintenance using Python’s scikit-learn 
library.

Tools Used: Google Colab, Python libraries (pandas, numpy, scikit-learn, matplotlib, 
seaborn)

Program Code:

# Import necessary libraries

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report, 
confusion_matrix
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense

# Ensure random output every time
np.random.seed(None)  # This sets the seed to a random value on each run

# Generate dataset with 1000 samples
num_samples = 1000
# Simulate sensor readings
temperature = np.random.randint(30, 100, num_samples)  # Temperature in Celsius
vibration = np.round(np.random.uniform(0.1, 3.0, num_samples), 2)  # Vibration 
level
pressure = np.random.randint(50, 400, num_samples)  # Pressure in kPa
humidity = np.random.randint(20, 80, num_samples)  # Humidity in %
machine_age = np.random.randint(1, 20, num_samples)  # Machine age in years

# Generate failure labels (1 = Failure, 0 = No Failure) based on conditions
failure = np.where(
   (temperature > 80) & (vibration > 2.0) & (pressure > 300) & (humidity > 60),
   1,  # High failure risk
   np.random.choice([0, 1], size=num_samples, p=[0.85, 0.15])  # 15% random 
failures
)

# Create DataFrame
df = pd.DataFrame({



   "Temperature": temperature,
   "Vibration": vibration,
   "Pressure": pressure,
   "Humidity": humidity,
   "Machine_Age": machine_age,
   "Failure": failure
})

# Save dataset as CSV file
csv_filename = "iot_sensor_data.csv"
df.to_csv(csv_filename, index=False)

print(f"Dataset generated and saved as '{csv_filename}' successfully!")

# Display first 5 rows of the dataset
print("\nFirst 5 rows of the dataset:")
print(df.head())

# Load dataset (if running separately)
df = pd.read_csv("iot_sensor_data.csv")

# Split dataset into features and labels
X = df.drop(columns=['Failure'])  # Features
y = df['Failure']  # Target variable

# Split into training (80%) and testing (20%) sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 
random_state=None)

# Train a Random Forest model
model_rf = RandomForestClassifier(n_estimators=100, random_state=None)
model_rf.fit(X_train, y_train)

# Predictions and Evaluation for Random Forest
y_pred_rf = model_rf.predict(X_test)
accuracy_rf = accuracy_score(y_test, y_pred_rf)
print("\nRandom Forest Model Accuracy:", accuracy_rf)
print("\nRandom Forest Classification Report:\n", classification_report(y_test, 
y_pred_rf))

# Confusion Matrix Visualization for Random Forest
plt.figure(figsize=(5, 4))
sns.heatmap(confusion_matrix(y_test, y_pred_rf), annot=True, fmt='d', 
cmap='Blues',
           xticklabels=['No Failure', 'Failure'], yticklabels=['No Failure', 
'Failure'])
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.title("Random Forest Confusion Matrix")



plt.show()

# Feature Importance Analysis for Random Forest
feature_importance = pd.Series(model_rf.feature_importances_, 
index=X.columns).sort_values(ascending=False)
plt.figure(figsize=(8, 5))
sns.barplot(x=feature_importance, y=feature_importance.index)
plt.xlabel("Feature Importance Score")
plt.ylabel("Features")
plt.title("Feature Importance in Random Forest Model")
plt.show()

# --- Neural Network Model using TensorFlow/Keras ---
# Build a Neural Network model
model_nn = Sequential([
    Dense(64, activation='relu', input_shape=(X_train.shape[1],)),  # Input layer
    Dense(32, activation='relu'),  # Hidden layer
    Dense(1, activation='sigmoid')  # Output layer for binary classification
])

# Compile the model
model_nn.compile(optimizer='adam', loss='binary_crossentropy', 
metrics=['accuracy'])

# Train the neural network
model_nn.fit(X_train, y_train, epochs=50, batch_size=32, verbose=1)  # Adjust 
epochs and batch size as needed

# Evaluate the neural network
loss, accuracy_nn = model_nn.evaluate(X_test, y_test, verbose=0)
print(f"\nNeural Network Accuracy: {accuracy_nn}")

# Predictions using Neural Network
y_pred_nn = (model_nn.predict(X_test) > 0.5).astype("int32")  # Predict using the 
neural network

# Classification Report for Neural Network
print("\nNeural Network Classification Report:\n", classification_report(y_test, 
y_pred_nn))

# Confusion Matrix Visualization for Neural Network
plt.figure(figsize=(5, 4))
sns.heatmap(confusion_matrix(y_test, y_pred_nn), annot=True, fmt='d', 
cmap='Blues',
           xticklabels=['No Failure', 'Failure'], yticklabels=['No Failure', 
'Failure'])
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.title("Neural Network Confusion Matrix")



plt.show()

Observation Table:





Classification Report

The classification report provides a detailed performance evaluation of a machine learning model. 
It includes precision, recall, F1-score, and support for each class (e.g., Failure vs. No Failure). 
Precision measures the proportion of correctly predicted positive cases out of all predicted 
positives, while recall (sensitivity) indicates how well the model identifies actual failures. F1-score 
is the harmonic mean of precision and recall, balancing both metrics. The macro average gives 
the unweighted mean of the scores for all classes, while the weighted average accounts for class 
imbalance by considering the number of actual instances per class.

Confusion Matrix

The confusion matrix is a table that summarizes the model's predictions compared to actual 
labels. It consists of True Positives (TP), True Negatives (TN), False Positives (FP), and False 
Negatives (FN). True Positives and True Negatives represent correctly classified instances, 
whereas False Positives (Type I Error) indicate misclassified negatives, and False Negatives 
(Type II Error) represent missed failures. The confusion matrix helps visualize model accuracy 
and highlights areas where the model may be misclassifying, allowing for targeted improvements.

Conclusion: Predictive maintenance using IoT sensor data and machine learning helps 
prevent equipment failures, reducing operational costs and downtime. The use of Random 
Forest provides a robust predictive model with high accuracy, making it a valuable tool for 
industrial applications.
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