
           

AIM: 
 

To predict equipment failures using IoT sensor data by applying machine learning techniques in R. 
 

Objective: 
 

To apply machine learning for predictive maintenance using R’s randomForest library. 
 

Tools Used: 
 

RStudio or Google Colab with R Kernel, R libraries (tidyverse, randomForest, caret) 
 

Theory: 
 

The Industrial Internet of Things (IIoT) is transforming equipment maintenance by enabling real-time 
monitoring of machinery using sensor data. Traditional maintenance methods are either reactive (fixing after 
failure) or preventive (routine servicing). These approaches often lead to unexpected failures or unnecessary 
maintenance costs. 

Predictive maintenance, powered by machine learning, helps predict failures before they occur. By leveraging 
historical sensor data, ML models identify failure patterns, reducing downtime, increasing efficiency, and 
lowering maintenance costs. 

Machine learning is a branch of artificial intelligence that allows systems to learn from data and make 
predictions. In predictive maintenance, ML models analyze large amounts of IoT sensor data to recognize 
failure patterns. 

 
Key Steps in Machine Learning for Predictive Maintenance 

 
1. Data Collection: IoT sensors collect data such as temperature, vibration, pressure, and humidity. 
2. Data Preprocessing: Cleaning and transforming raw data into a suitable format for training ML 

models. 
3. Feature Engineering: Selecting and transforming relevant sensor readings to improve model 

performance. 
4. Model Selection & Training: Choosing an appropriate machine learning model and training it 

using historical data. 
5. Model Evaluation: Assessing the model’s accuracy using evaluation metrics. 
6. Failure Prediction: Deploying the trained model to predict equipment failures in real-time. 
7. Decision Support: Using predictions to schedule maintenance before failure occurs. 

 
Machine Learning Models for Predictive Maintenance 

 
Several machine learning models can be used to predict failures. These models fall into three categories: Supervised 
Learning, Unsupervised Learning, and Reinforcement Learning. 



           
 
 

Supervised Learning Models 
 

Supervised learning involves training a model on labeled data, where each sensor reading is associated 
with a known failure status (0 = No Failure, 1 = Failure). The model learns the relationship between input 
features and failure status. 

Classification Models (for Predicting Failures) 
 

Since failure prediction is a binary classification problem, commonly used models include: 
 

● Logistic Regression: Estimates the probability of failure based on sensor readings. 
● Decision Trees: Uses a tree-like structure to classify failures. 
● Random Forest: An ensemble of multiple decision trees that improves prediction accuracy. 
● Support Vector Machines (SVM): Finds an optimal boundary between failure and non-failure 

cases. 
● Neural Networks: Deep learning models for large datasets. 

 
Regression Models (for Predicting Remaining Useful Life) 

 
Instead of predicting failure as yes/no, regression models estimate the remaining useful life (RUL) of a 
machine: 

● Linear Regression: Predicts RUL based on sensor values. 
● Gradient Boosting (XGBoost, LightGBM): Uses multiple weak learners to improve accuracy. 

 
Unsupervised Learning Models 

 
When failure labels are unavailable, anomaly detection methods such as K-Means, DBSCAN clustering, 
and Autoencoders help detect unusual patterns. 

Feature Engineering 
 

Feature engineering involves selecting and transforming sensor data into meaningful inputs for ML 
models. Important features include: 

● Statistical Features: Mean, standard deviation, variance of sensor readings. 
● Time-Series Features: Rolling averages and moving window calculations. 
● Frequency-Domain Features: Fourier transforms for vibration analysis. 

 
Evaluation Metrics for Predictive Maintenance Models 

 
Once trained, a model’s effectiveness is evaluated using: 

 
● Accuracy: Measures overall prediction correctness. 
● Precision: Percentage of correctly predicted failures among all predicted failures. 
● Recall (Sensitivity): Measures how many actual failures were correctly predicted. 
● F1-Score: Balances precision and recall. 
● Confusion Matrix: Shows true positives, false positives, true negatives, and false negatives. 



           

A good predictive model should have high precision and recall, reducing false positives (unnecessary 
maintenance) and false negatives (missed failures). 

Program Code: 

# Install necessary packages (run separately before executing the script) 
install.packages("tidyverse", dependencies = TRUE) 
install.packages("randomForest", dependencies = TRUE) 
install.packages("caret", dependencies = TRUE) 
install.packages("ggplot2", dependencies = TRUE) 
install.packages("viridis", dependencies = TRUE) 
 
# Load required libraries 
library(tidyverse) 
library(randomForest) 
library(caret) 
library(ggplot2) 
library(viridis) 
 
# Set seed for reproducibility 
set.seed(42) 
 
# Generate synthetic IoT sensor data 
num_samples <- 1000 
 
iot_data <- tibble( 
  Temperature = sample(30:100, num_samples, replace = TRUE), 
  Vibration = round(runif(num_samples, 0.1, 3.0), 2), 
  Pressure = sample(50:400, num_samples, replace = TRUE), 
  Humidity = sample(20:80, num_samples, replace = TRUE), 
  Machine_Age = sample(1:20, num_samples, replace = TRUE) 
) 
 
# Generate Failure labels (1 = Failure, 0 = No Failure) 
iot_data <- iot_data %>% 
  mutate( 
    Failure = ifelse( 
      Temperature > 80 & Vibration > 2.0 & Pressure > 300 & Humidity > 60, 
      1, 
      sample(c(0, 1), num_samples, replace = TRUE, prob = c(0.85, 0.15)) 
    ) 
  ) 
 
# Convert Failure column to factor 
iot_data$Failure <- as.factor(iot_data$Failure) 
 
# Split data into training (80%) and testing (20%) datasets 
set.seed(42) 
train_index <- createDataPartition(iot_data$Failure, p = 0.8, list = FALSE) 



           

train_data <- iot_data[train_index, ] 
test_data <- iot_data[-train_index, ] 
 
# Train a Random Forest Classifier 
rf_model <- randomForest(Failure ~ ., data = train_data, ntree = 100, importance = 
TRUE) 
 
# Make predictions on test data 
rf_predictions <- predict(rf_model, test_data) 
 
# Calculate Accuracy 
accuracy <- mean(rf_predictions == test_data$Failure) 
print(paste("Model Accuracy:", round(accuracy * 100, 2), "%")) 
 
# Generate Confusion Matrix 
conf_matrix <- confusionMatrix(rf_predictions, test_data$Failure) 
 
# Convert Confusion Matrix to DataFrame for Visualization 
conf_df <- as.data.frame(conf_matrix$table) 
colnames(conf_df) <- c("Actual", "Predicted", "Count") 
 
# Feature Importance Visualization 
feature_importance <- as.data.frame(importance(rf_model)) 
feature_importance$Feature <- rownames(feature_importance) 
 
# Select Importance Column 
feature_importance <- feature_importance %>% 
  select(Feature, MeanDecreaseGini) %>% 
  arrange(desc(MeanDecreaseGini)) 
 
# Plot Feature Importance 
ggplot(feature_importance, aes(x = reorder(Feature, MeanDecreaseGini), y = 
MeanDecreaseGini, fill = MeanDecreaseGini)) + 
  geom_bar(stat = "identity", width = 0.7) + 
  coord_flip() + 
  scale_fill_viridis(option = "magma", direction = -1) + 
  theme_minimal() + 
  labs( 
    title = "Feature Importance in IoT Failure Prediction", 
    x = "Features", 
    y = "Importance Score" 
  ) + 
  theme( 
    text = element_text(size = 12), 
    axis.title.x = element_text(face = "bold"), 
    axis.title.y = element_text(face = "bold"), 
    plot.title = element_text(hjust = 0.5, face = "bold") 
  ) 



           

 
# Plot Improved Confusion Matrix 
ggplot(conf_df, aes(x = Actual, y = Predicted, fill = Count)) + 
geom_tile(color = "white") + 

geom_text(aes(label = Count), size = 6, fontface = "bold") + 
scale_fill_gradient(low = "lightblue", high = "darkblue") + labs( 

title = "Confusion Matrix - IoT Failure Prediction", x = 
"Actual", 

y = "Predicted", fill = 
"Count" 

) + 
theme_minimal() + theme( 
plot.title = element_text(hjust = 0.5, face = "bold"), 

axis.title.x = element_text(face = "bold"), axis.title.y = 
element_text(face = "bold"), legend.title = 
element_text(face = "bold") 

) 
 

head(iot_data, 5) 

 

Explanation of Code: 
 

This  R  script  trains  a  machine  learning  model  to  predict  equipment  failures  using  IoT  sensor  data.  It 
consists  of  several  steps, from data generation to model training, and visualizing feature importance & 
confusion matrix. Below is a step-by-step explanation. 

🔹 Step 1: Install and Load Required Packages 

install.packages("tidyverse", dependencies = TRUE) 

install.packages("randomForest", dependencies = TRUE) 

install.packages("caret", dependencies = TRUE) 

install.packages("ggplot2", dependencies = TRUE) 

install.packages("viridis", dependencies = TRUE) 

These commands install essential R packages required for: 

● Data processing (tidyverse) 

● Machine learning (randomForest, caret) 

● Data visualization (ggplot2, viridis) 

Once installed, the following commands load these libraries: 

library(tidyverse) 

library(randomForest) 

library(caret) 

library(ggplot2) 

library(viridis) 

🔹 Step 2: Generate Synthetic IoT Sensor Data 

set.seed(42) 

num_samples <- 1000 
 



           

● set.seed(42) ensures that the random numbers generated remain the same every time the code 
runs. 

● num_samples <- 1000 creates 1000 simulated IoT sensor readings.  

 
The following block creates a dataset with five sensor features: 

iot_data <- tibble( 

Temperature = sample(30:100, num_samples, replace = TRUE), 

Vibration = round(runif(num_samples, 0.1, 3.0), 2), 

Pressure = sample(50:400, num_samples, replace = TRUE), 

Humidity = sample(20:80, num_samples, replace = TRUE), 

Machine_Age = sample(1:20, num_samples, replace = TRUE) 

) 

● Temperature: Random values between 30°C and 100°C. 

● Vibration: Random values between 0.1 and 3.0. 

● Pressure: Random values between 50 and 400 kPa. 

● Humidity: Random values between 20% and 80%. 

● Machine Age: Random values between 1 and 20 years. 

The next block creates failure labels (0 = No Failure, 1 = Failure): 

iot_data <- iot_data %>% 

mutate( 

Failure = ifelse( 

Temperature > 80 & Vibration > 2.0 & Pressure > 300 & Humidity > 60, 1, 

sample(c(0, 1), num_samples, replace = TRUE, prob = c(0.85, 0.15)) 

) 

) 

● If Temperature > 80°C, Vibration > 2.0, Pressure > 300 kPa, and Humidity > 60%, it is classified as 
a Failure (1). 

● Otherwise, random failures are assigned with 15% probability. 

🔹 Step 3: Data Preprocessing 

iot_data$Failure <- as.factor(iot_data$Failure) 

● Converts Failure into a factor to make it compatible with machine learning models. 

set.seed(42) 

train_index <- createDataPartition(iot_data$Failure, p = 0.8, list = FALSE) 

train_data <- iot_data[train_index, ] 

test_data <- iot_data[-train_index, ] 

● Splits the dataset into 80% training data and 20% testing data. 

🔹 Step 4: Train a Random Forest Classifier 

rf_model <- randomForest(Failure ~ ., data = train_data, ntree = 100, importance = TRUE) 

 
● Trains a Random Forest model with 100 decision trees (ntree = 100). 

● importance = TRUE enables feature importance calculation. 

🔹 Step 5: Make Predictions and Evaluate Accuracy 



           

rf_predictions <- predict(rf_model, test_data) 

accuracy <- mean(rf_predictions == test_data$Failure) 

print(paste("Model Accuracy:", round(accuracy * 100, 2), "%")) 

 
● Predicts failures on test data. 

● Calculates accuracy by comparing predictions with actual values. 

🔹 Step 6: Generate Confusion Matrix 

conf_matrix <- confusionMatrix(rf_predictions, test_data$Failure) 

conf_df <- as.data.frame(conf_matrix$table) 

colnames(conf_df) <- c("Actual", "Predicted", "Count") 

● Computes confusion matrix to evaluate model performance. 

● Converts the matrix into a dataframe for visualization. 

🔹 Step 7: Feature Importance Visualization 

feature_importance <- as.data.frame(importance(rf_model)) 

feature_importance$Feature <- rownames(feature_importance) 

feature_importance <- feature_importance %>% 

select(Feature, MeanDecreaseGini) %>% 

arrange(desc(MeanDecreaseGini)) 

● Extracts feature importance scores from the Random Forest model. 

● Sorts features in descending order of importance. 

🔹 Plot Feature Importance 

ggplot(feature_importance, aes(x = reorder(Feature, MeanDecreaseGini), y = MeanDecreaseGini, fill = 
MeanDecreaseGini)) + 

geom_bar(stat = "identity", width = 0.7) + 

coord_flip() + 

scale_fill_viridis(option = "magma", direction = -1) + 

theme_minimal() + 

labs( 

title = "Feature Importance in IoT Failure Prediction", 

x = "Features", 

y = "Importance Score" 

) + 

theme( 

text = element_text(size = 12), axis.title.x 

= element_text(face = "bold"), axis.title.y 

= element_text(face = "bold"), 

plot.title = element_text(hjust = 0.5, face = "bold") 

) 

 
● Creates a horizontal bar plot using ggplot2 where: 

○ Most important features appear at the top 
○ Darker colors highlight highly significant features. 



           

 

🔹 Step 8: Confusion Matrix Visualization 

ggplot(conf_df, aes(x = Actual, y = Predicted, fill = Count)) + 

geom_tile(color = "white") + 

geom_text(aes(label = Count), size = 6, fontface = "bold") + 

scale_fill_gradient(low = "lightblue", high = "darkblue") + 

labs( 

title = "Confusion Matrix - IoT Failure Prediction", 

x = "Actual", 

y = "Predicted", 

fill = "Count" 

) + 

theme_minimal() + 

theme( 

plot.title = element_text(hjust = 0.5, face = "bold"), 

axis.title.x = element_text(face = "bold"), 

axis.title.y = element_text(face = "bold"), 

legend.title = element_text(face = "bold") 

) 

● Creates a confusion matrix heatmap where: 

○ Correct predictions appear in darker shades. 

○ Misclassifications (False Positives & False Negatives) are visible in lighter shades. 
 

Explanation of LOGIC: 
 

1. Load Dataset: The IoT sensor dataset is loaded for analysis. 
2. Preprocessing: Missing values are handled, and features are scaled. 
3. Model Selection: Random Forest is chosen for its robustness in classification tasks. 
4. Training and Testing: The dataset is split, and the model is trained using training data. 
5. Prediction & Evaluation: The trained model predicts failures, and accuracy is 

evaluated. 

Message Flow: 
 

1. Load and preprocess IoT sensor data. 
2. Train a machine learning model for failure prediction. 
3. Evaluate model performance using classification metrics. 
4. Use predictions for preventive maintenance planning. 

 
Flowchart: 

 
Start Program ↓ 

 
Load and Preprocess IoT Sensor Data ↓ 

Train Machine Learning Model ↓ 



           

Predict Equipment Failures ↓ 

Evaluate Model Performance ↓ 

Deploy for Predictive Maintenance ↓ 

End 

Observation Tables: 
 

First 5 rows of the dataset: 
 

Sample Temperature Vibration Pressure Humidity Machine Age Failure 

1 78 0.26 132 38 4 0 

2 94 2.62 343 77 6 1 

3 54 2.49 281 37 8 1 

4 47 0.59 146 61 13 0 

5 78 2.47 400 53 7 0 

 

Model Accuracy:  84.92% 
 

Classification Report 
 

Class Precision Recall F1-Score Support 

0 (No Failure) 0.86 0.98 0.91 171 

1 (Failure) 0.25 0.04 0.06 28 

Macro Avg 0.56 0.51 0.49 199 

Weighted Avg 0.78 0.85 0.80 199 

 
Fill the table from Confusion Matrix 

 

Actual \ 
Predicted 

No Failure (0) Failure (1) 

No Failure (0) 168 (True Negatives) 3 (False Positives) 

Failure (1) 27 (False Negatives) 1 (True Positives) 

 



           
 

Classification Report 
 

The classification report provides a detailed performance evaluation of a machine learning model. It 
includes precision, recall, F1-score, and support for each class (e.g., Failure vs. No Failure). Precision 
measures the proportion of correctly predicted positive cases out of all predicted positives, while recall 
(sensitivity) indicates how well the model identifies actual failures. F1-score is the harmonic mean of 
precision and recall, balancing both metrics. The macro average gives the unweighted mean of the 
scores for all classes, while the weighted average accounts for class imbalance by considering the 
number of actual instances per class. 

 
Confusion Matrix 

 
The confusion matrix is a table that summarizes the model's predictions compared to actual labels. It 
consists of True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN). True 
Positives and True Negatives represent correctly classified instances, whereas False Positives (Type I 
Error) indicate misclassified negatives, and False Negatives (Type II Error) represent missed failures. The 
confusion matrix helps visualize model accuracy and highlights areas where the model may be 
misclassifying, allowing for targeted improvements. 

Outcome: (attach All screenshots of readable size) 
 

 



           

 

 
 
 

Conclusion: Predictive maintenance using IoT sensor data and machine learning helps prevent 
equipment failures, reducing operational costs and downtime. The use of Iot failure prediction 
provides a robust predictive model with high accuracy, making it a valuable tool for industrial 
applications. 

 

 

 

 



           
 

Homework Assigned: 
 

Task: Extend the program to implement a deep learning model (e.g., Neural Network) for failure 
prediction. 

Objective: Implement a deep learning model for failure prediction and compare its performance 
with a Iot failure prediction model. 

Tools Used: R language, RStudio (dplyr, data.table, tidyverse, base::matrix, array, Matrix, caret, 
mlr3, tidymodels, randomForest, ggplot2, plotly, base R plot(),ggplot2, ggpubr, corrplot, 
tensorflow, keras (R interface)) 

Program code: 

# Load necessary libraries 
library(ggplot2) 
library(randomForest) 
library(caret) 
library(dplyr) 
library(keras) 
library(tensorflow) 
library(pROC) 
 
# Set seed for reproducibility 
set.seed(42) 
 
# Generate sample IoT data 
num_samples <- 1000 
iot_data <- data.frame( 
  Temperature = sample(30:100, num_samples, replace = TRUE), 
  Vibration = round(runif(num_samples, 0.1, 3.0), 2), 
  Pressure = sample(50:400, num_samples, replace = TRUE), 
  Humidity = sample(20:80, num_samples, replace = TRUE), 
  Machine_Age = sample(1:20, num_samples, replace = TRUE) 
) 
 
# Define Failure condition 
iot_data$Failure <- ifelse( 
  iot_data$Temperature > 80 &  
    iot_data$Vibration > 2.0 &  
    iot_data$Pressure > 300 &  
    iot_data$Humidity > 60, 
  1, 
  sample(c(0, 1), num_samples, replace = TRUE, prob = c(0.85, 0.15)) 
) 
 
# View sample data 
print(head(iot_data)) 



           

 
# Train-test split 
train_index <- createDataPartition(iot_data$Failure, p = 0.8, list = FALSE) 
train_data <- iot_data[train_index, ] 
test_data <- iot_data[-train_index, ] 
 
X_train <- train_data %>% select(-Failure) 
y_train <- train_data$Failure 
X_test <- test_data %>% select(-Failure) 
y_test <- test_data$Failure 
 
# Random Forest Model 
rf_model <- randomForest(Failure ~ ., data = train_data, ntree = 100) 
rf_predictions <- predict(rf_model, X_test) 
rf_accuracy <- mean(rf_predictions == y_test) 
 
# Print RF accuracy and confusion matrix 
print(paste("IoT Failure Prediction Model Accuracy:", round(rf_accuracy * 100, 2), 
"%")) 
conf_matrix <- table(Predicted = rf_predictions, Actual = y_test) 
print(conf_matrix) 
 
# Feature Importance Plot 
iot_feature_importance <- as.data.frame(varImpPlot(rf_model)) 
 
p1 <- ggplot(iot_feature_importance, aes(x = 
reorder(rownames(iot_feature_importance), MeanDecreaseGini), y = MeanDecreaseGini)) 
+ 
  geom_bar(stat = "identity", fill = "purple") + 
  coord_flip() + 
  labs(title = "Feature Importance in IoT Failure Prediction", x = "Features", y = 
"Importance") 
print(p1) 
 
# Prepare data for Neural Network 
X_train_nn <- as.matrix(X_train) 
X_test_nn <- as.matrix(X_test) 
y_train_nn <- to_categorical(y_train) 
y_test_nn <- to_categorical(y_test) 
 
# Neural Network Model 
nn_model <- keras_model_sequential() %>% 
  layer_dense(units = 16, activation = 'relu', input_shape = ncol(X_train_nn)) %>% 
  layer_dense(units = 8, activation = 'relu') %>% 
  layer_dense(units = 2, activation = 'softmax') 
 
nn_model %>% compile( 
  optimizer = 'adam', 



           

  loss = 'categorical_crossentropy', 
  metrics = c('accuracy') 
) 
 
# Train NN model 
history <- nn_model %>% fit( 
  X_train_nn, y_train_nn, 
  epochs = 50, 
  batch_size = 10, 
  validation_data = list(X_test_nn, y_test_nn), 
  verbose = 0 
) 
 
# Evaluate NN model 
nn_eval <- nn_model %>% evaluate(X_test_nn, y_test_nn) 
nn_loss <- nn_eval$loss 
nn_accuracy <- nn_eval$accuracy 
 
print(paste("Neural Network Model Accuracy:", round(nn_accuracy * 100, 2), "%")) 
 
# Predictions and confusion matrix for NN 
nn_predictions <- nn_model %>% predict(X_test_nn) 
nn_pred_labels <- apply(nn_predictions, 1, which.max) - 1 
conf_matrix_nn <- table(Predicted = nn_pred_labels, Actual = y_test) 
print(conf_matrix_nn) 
 
# Plot training history 
plot(history) 
 
# Compare Model Accuracies 
comparison_data <- data.frame( 
  Model = c("IoT Failure Prediction", "Neural Network"), 
  Accuracy = c(rf_accuracy * 100, nn_accuracy * 100) 
) 
 
print(comparison_data) 
 
ggplot(comparison_data, aes(x = Model, y = Accuracy, fill = Model)) + 
  geom_bar(stat = "identity") + 
  labs(title = "Model Accuracy Comparison", y = "Accuracy (%)") 

 
Observation Tables: 

 
First 5 rows of the dataset: 

 
 
 
 



           

Sample Temperature Vibration Pressure Humidity Machine Age Failure 

1 81 2.58 273 23 2 0 

2 44 2.51 369 66 11 0 

3 90 1.25 59 44 13 0 

4 50 2.04 351 49 4 0 

5 53 0.69 280 28 7 0 

 

IoT Failure Prediction Accuracy: 85.00% 

Classification Report:- 

 
 

Neural Network Model Accuracy: 85.00% 

Fill the table from Confusion Matrix 
 

Actual \ 
Predicted 

No Failure (0) Failure (1) 

No Failure (0) 170 (True Negatives) 1 ( False Positives) 

Failure (1) 29 0 

 

Comparison of Model Accuracies: 

Iot Failure Prediction: 85.000000 

Neural Network: 85.000002 

 



           
 

Output: 
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