Data Structure Practicals in C
1. Bubble Sort
Aim: To implement Bubble Sort algorithm in C.
#include <stdio.h>
void bubbleSort(int arr[], int n) {
for (int i = 0; i < n-1; i++) {
for (int j = 0; j < n-i-1; j++) {
if (arr[j] > arr[j+1]) {
int temp = arr[j];
arr[j] = arr[j+1];
arr[j+1] = temp;
}
}
}
}
void printArray(int arr[], int n) {
for (int i = 0; i < n; i++)
printf("%d ", arr[i]);
printf("\n");
}
int main() {
int arr[] = {64, 34, 25, 12, 22, 11, 90};
int n = sizeof(arr)/sizeof(arr[0]);
bubbleSort(arr, n);
printf("Sorted array: \n");
printArray(arr, n);
return 0;
}
2. Selection Sort
Aim: To implement Selection Sort algorithm in C.
#include <stdio.h>
void selectionSort(int arr[], int n) {
int i, j, min_idx;
for (i = 0; i < n-1; i++) {
min_idx = i;
for (j = i+1; j < n; j++)
if (arr[j] < arr[min_idx])
min_idx = j;
int temp = arr[min_idx];
arr[min_idx] = arr[i];
arr[i] = temp;
}
}
void printArray(int arr[], int n) {
for (int i=0; i < n; i++)
printf("%d ", arr[i]);
printf("\n");
}
int main() {
int arr[] = {64, 25, 12, 22, 11};
int n = sizeof(arr)/sizeof(arr[0]);
selectionSort(arr, n);
printf("Sorted array: \n");
printArray(arr, n);
return 0;
}
3. Quick Sort
Aim: To implement Quick Sort algorithm in C.
#include <stdio.h>
void swap(int* a, int* b) {
int t = *a;
*a = *b;
*b = t;
}
int partition (int arr[], int low, int high) {
int pivot = arr[high];
int i = (low - 1);
for (int j = low; j <= high - 1; j++) {
if (arr[j] < pivot) {
i++;
swap(&arr[i], &arr[j]);
}
}
swap(&arr[i + 1], &arr[high]);
return (i + 1);
}
void quickSort(int arr[], int low, int high) {
if (low < high) {
int pi = partition(arr, low, high);
quickSort(arr, low, pi - 1);
quickSort(arr, pi + 1, high);
}
}
void printArray(int arr[], int size) {
for (int i=0; i < size; i++)
printf("%d ", arr[i]);
printf("\n");
}
int main() {
int arr[] = {10, 7, 8, 9, 1, 5};
int n = sizeof(arr)/sizeof(arr[0]);
quickSort(arr, 0, n-1);
printf("Sorted array: \n");
printArray(arr, n);
return 0;
}
4. Merge Sort
Aim: To implement Merge Sort algorithm in C.
#include <stdio.h>
#include <stdlib.h>
void merge(int arr[], int l, int m, int r) {
int i, j, k;
int n1 = m - l + 1;
int n2 = r - m;
int L[n1], R[n2];
for (i = 0; i < n1; i++)
L[i] = arr[l + i];
for (j = 0; j < n2; j++)
R[j] = arr[m + 1+ j];
i = 0; j = 0; k = l;
while (i < n1 && j < n2) {
if (L[i] <= R[j])
arr[k++] = L[i++];
else
arr[k++] = R[j++];
}
while (i < n1)
arr[k++] = L[i++];
while (j < n2)
arr[k++] = R[j++];
}
void mergeSort(int arr[], int l, int r) {
if (l < r) {
int m = l+(r-l)/2;
mergeSort(arr, l, m);
mergeSort(arr, m+1, r);
merge(arr, l, m, r);
}
}
void printArray(int A[], int size) {
for (int i = 0; i < size; i++)
printf("%d ", A[i]);
printf("\n");
}
int main() {
int arr[] = {12, 11, 13, 5, 6, 7};
int arr_size = sizeof(arr)/sizeof(arr[0]);
printf("Given array is \n");
printArray(arr, arr_size);
mergeSort(arr, 0, arr_size - 1);
printf("\nSorted array is \n");
printArray(arr, arr_size);
return 0;
}
5. Stack Operations
Aim: To implement stack operations (push, pop, display) using array in C.
#include <stdio.h>
#define SIZE 100
int stack[SIZE];
int top = -1;
void push(int value) {
if (top == SIZE - 1)
printf("Stack Overflow\n");
else {
stack[++top] = value;
printf("%d pushed to stack\n", value);
}
}
void pop() {
if (top == -1)
printf("Stack Underflow\n");
else
printf("%d popped from stack\n", stack[top--]);
}
void display() {
if (top == -1)
printf("Stack is empty\n");
else {
printf("Stack elements: ");
for (int i = top; i >= 0; i--)
printf("%d ", stack[i]);
printf("\n");
}
}
int main() {
push(10);
push(20);
push(30);
display();
pop();
display();
return 0;
}
6. Queue Operations
Aim: To implement queue operations (enqueue, dequeue, display) using array in C.
#include <stdio.h>
#define SIZE 100
int queue[SIZE];
int front = -1, rear = -1;
void enqueue(int value) {
if (rear == SIZE - 1)
printf("Queue Overflow\n");
else {
if (front == -1) front = 0;
queue[++rear] = value;
printf("%d enqueued to queue\n", value);
}
}
void dequeue() {
if (front == -1 || front > rear)
printf("Queue Underflow\n");
else
printf("%d dequeued from queue\n", queue[front++]);
}
void display() {
if (front == -1 || front > rear)
printf("Queue is empty\n");
else {
printf("Queue elements: ");
for (int i = front; i <= rear; i++)
printf("%d ", queue[i]);
printf("\n");
}
}
int main() {
enqueue(10);
enqueue(20);
enqueue(30);
display();
dequeue();
display();
return 0;
}
7. Linear and Binary Search
Aim: To implement Linear Search and Binary Search in C.
#include <stdio.h>
void linearSearch(int arr[], int n, int x) {
for (int i = 0; i < n; i++) {
if (arr[i] == x) {
printf("Linear Search: Element found at index %d\n", i);
return;
}
}
printf("Linear Search: Element not found\n");
}
int binarySearch(int arr[], int l, int r, int x) {
while (l <= r) {
int m = l + (r - l) / 2;
if (arr[m] == x)
return m;
if (arr[m] < x)
l = m + 1;
else
r = m - 1;
}
return -1;
}
int main() {
int arr[] = {2, 4, 10, 20, 40};
int n = sizeof(arr)/sizeof(arr[0]);
int x = 10;
linearSearch(arr, n, x);
int result = binarySearch(arr, 0, n - 1, x);
if (result != -1)
printf("Binary Search: Element found at index %d\n", result);
else
printf("Binary Search: Element not found\n");
return 0;
}
8. Singly Linked List
Aim: To implement singly linked list operations in C.
#include <stdio.h>
#include <stdlib.h>
struct Node {
int data;
struct Node* next;
};
void insertEnd(struct Node** head, int data) {
struct Node* new_node = (struct Node*) malloc(sizeof(struct Node));
struct Node* last = *head;
new_node->data = data;
new_node->next = NULL;
if (*head == NULL) {
*head = new_node;
return;
}
while (last->next != NULL)
last = last->next;
last->next = new_node;
}
void display(struct Node* node) {
while (node != NULL) {
printf("%d -> ", node->data);
node = node->next;
}
printf("NULL\n");
}
int main() {
struct Node* head = NULL;
insertEnd(&head, 10);
insertEnd(&head, 20);
insertEnd(&head, 30);
printf("Linked List: ");
display(head);
return 0;
}
9. Stack using Linked List
Aim: To implement stack using linked list in C.
#include <stdio.h>
#include <stdlib.h>
struct Node {
int data;
struct Node* next;
};
struct Node* top = NULL;
void push(int data) {
struct Node* new_node = (struct Node*) malloc(sizeof(struct Node));
new_node->data = data;
new_node->next = top;
top = new_node;
printf("%d pushed to stack\n", data);
}
void pop() {
if (top == NULL)
printf("Stack Underflow\n");
else {
printf("%d popped from stack\n", top->data);
top = top->next;
}
}
void display() {
struct Node* temp = top;
printf("Stack elements: ");
while (temp != NULL) {
printf("%d ", temp->data);
temp = temp->next;
}
printf("\n");
}
int main() {
push(10);
push(20);
push(30);
display();
pop();
display();
return 0;
}
10. Queue using Linked List
Aim: To implement queue using linked list in C.
#include <stdio.h>
#include <stdlib.h>
struct Node {
int data;
struct Node* next;
};
struct Node* front = NULL;
struct Node* rear = NULL;
void enqueue(int data) {
struct Node* new_node = (struct Node*) malloc(sizeof(struct Node));
new_node->data = data;
new_node->next = NULL;
if (rear == NULL) {
front = rear = new_node;
return;
}
rear->next = new_node;
rear = new_node;
printf("%d enqueued to queue\n", data);
}
void dequeue() {
if (front == NULL)
printf("Queue Underflow\n");
else {
struct Node* temp = front;
front = front->next;
if (front == NULL)
rear = NULL;
printf("%d dequeued from queue\n", temp->data);
free(temp);
}
}
void display() {
struct Node* temp = front;
printf("Queue elements: ");
while (temp != NULL) {
printf("%d ", temp->data);
temp = temp->next;
}
printf("\n");
}
int main() {
enqueue(10);
enqueue(20);
enqueue(30);
display();
dequeue();
display();
return 0;
}
Last updated on