Skip to Content
Semester 6SyllabusData Science

Data Science

Unit 1: Introduction to Data Science

  • Defining Data Science
  • Roles and Responsibilities in Data Science
  • Data Science in Business
  • Use Cases for Data Science
  • Relationship Between:
    • Data Science and Big Data
    • Data Science and Machine Learning
  • Data Science Process Overview:
    • Defining Goals
    • Retrieving Data
    • Data Preparation
    • Data Exploration
    • Data Modeling
    • Presentation

Unit 2: Introduction to Statistics

  • What is Statistics?
  • Descriptive Statistics:
    • Introduction
    • Population and Sample
    • Types of Variables
    • Measures of Central Tendency
    • Measures of Variability
    • Coefficient of Variance
    • Skewness and Kurtosis
  • Inferential Statistics:
    • Normal Distribution
    • Test Hypotheses
    • Central Limit Theorem
    • Confidence Interval
    • T-Test
    • Type I and II Errors

Unit 3: Machine Learning Introduction and Concepts

  • Machine Learning Basics:
    • Modeling Process
    • Training Model
    • Validating Model
    • Predicting New Observations
  • Key Terminologies in Machine Learning
  • Types of Machine Learning Algorithms:
    • Supervised Learning Algorithms:
      • Regression: Linear Regression
      • Classification Algorithms
    • Unsupervised Learning Algorithms:
      • Clustering Algorithms

Unit 4: Data Visualization and Ethics

  • Introduction to Data Visualization:
    • Visualization Options
    • Filters
    • Python Libraries for Visualization:
      • Matplotlib
      • Seaborn
  • Data Science Ethics:
    • Doing Good Data Science
    • Ownership of Data
    • Valuing Different Aspects of Privacy
    • Getting Informed Consent
    • The Five Cs (Care, Consent, Confidentiality, Context, and Clarity)
    • Diversity and Inclusion
    • Future Trends
Last updated on